

AVX
Multilayer Ceramic
Chip Capacitor

Ceramic Chip Capacitors

Table of Contents

Basic Capacitor Formulas	. 2
How to Order - AVX Part Number Explanation	. 3
C0G (NP0) Dielectric	
General Specifications	. 4
Typical Characteristic Curves	. 5
Capacitance Range	- 7
X7R Dielectric	
General Specifications	. 8
Typical Characteristic Curves	. 9
Capacitance Range	11
Z5U Dielectric	
General Specifications	12
Typical Characteristic Curves	13
Capacitance Range	15
Y5V Dielectric	
General Specifications	16
Typical Characteristic Curves	17
Capacitance Range	18
Low Profile Chips for Z5U & Y5V Dielectric	19
High Voltage Chips for 500V to 5000V Applications20 -	21
General Specifications	
Environmental	23
Mechanical	24
MIL-PRF-55681/Chips	
Part Number Example	25
Military Part Number Identification (CDR01 thru CDR06)	26
Military Part Number Identification (CDR31 thru CDR35)	27
Military Part Number Identification (CDR31)	28
Military Part Number Identification (CDR32)	29
Military Part Number Identification (CDR33/34/35)	30
European Version CECC 32 101-801 Chips	
Packaging of Chip Components Automatic Insertion Packaging	
Embossed Carrier Configuration - 8 & 12mm Tape	
Paper Carrier Configuration - 8 & 12mm Tape	
Bulk Case Packaging	
MLC Chip Capacitors General Description	40
Surface Mounting Guide	43

Basic Capacitor Formulas

I. Capacitance (farads)

English:
$$C = \frac{.224 \text{ K A}}{T_{\text{D}}}$$

Metric: $C = \frac{.0884 \text{ K A}}{T_{\text{D}}}$

II. Energy stored in capacitors (Joules, watt - sec)

III. Linear charge of a capacitor (Amperes)

$$I = C \frac{dV}{dt}$$

IV. Total Impedance of a capacitor (ohms)

$$Z = \sqrt{R_S^2 + (X_C - X_L)^2}$$

V. Capacitive Reactance (ohms)

$$x_C = \frac{1}{2 \pi fC}$$

VI. Inductive Reactance (ohms)

$$x_1 = 2 \pi fL$$

VII. Phase Angles:

Ideal Capacitors: Current leads voltage 90° Ideal Inductors: Current lags voltage 90° Ideal Resistors: Current in phase with voltage

VIII. Dissipation Factor (%)

D.F.=
$$\tan \delta$$
 (loss angle) = $\frac{\text{E.S.R.}}{\text{X}_{\text{C}}}$ = (2 π fC) (E.S.R.)

IX. Power Factor (%)

P.F. = Sine δ (loss angle) = Cos ϕ (phase angle) P.F. = (when less than 10%) = DF

SYMBOLS

X. Quality Factor (dimensionless)

Q = Cotan
$$\delta$$
 (loss angle) = $\frac{1}{D.F.}$

XI. Equivalent Series Resistance (ohms)

E.S.R. = (D.F.) (Xc) = (D.F.) / (2
$$\pi$$
 fC)

XII. Power Loss (watts)

Power Loss = $(2 \pi fCV^2)$ (D.F.)

XIII. KVA (Kilowatts)

$$KVA = 2 \pi fCV^2 \times 10^{-3}$$

XIV. Temperature Characteristic (ppm/°C)

$$T.C. = \frac{Ct - C_{25}}{C_{25} (T_t - 25)} \times 10^6$$

XV. Cap Drift (%)

C.D. =
$$\frac{C_1 - C_2}{C_1}$$
 x 100

XVI. Reliability of Ceramic Capacitors

$$\frac{L_o}{L_t} = \left(\frac{V_t}{V_o}\right) \times \left(\frac{T_t}{T_o}\right) Y$$

XVII. Capacitors in Series (current the same)

Any Number:
$$\frac{1}{C_T} = \frac{1}{C_1} + \frac{1}{C_2} - \frac{1}{C_N}$$
 Two:
$$C_T = \frac{C_1 C_2}{C_1 + C_2}$$

XVIII. Capacitors in Parallel (voltage the same)

$$C_T = C_1 + C_2 - - + C_N$$

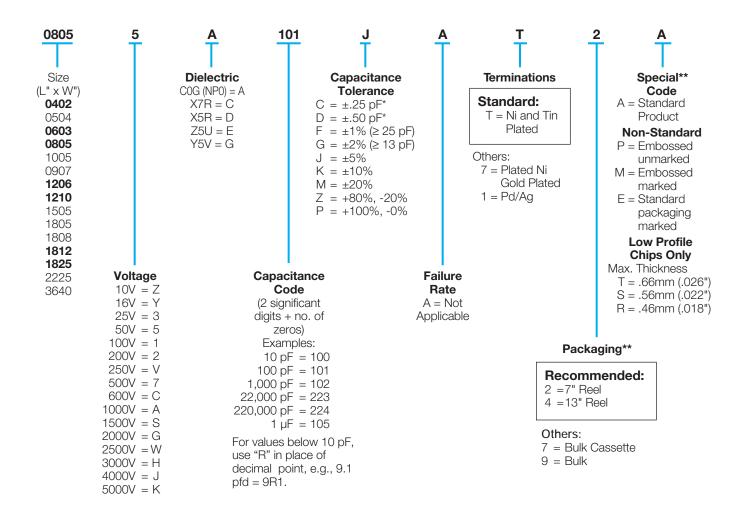
XIX. Aging Rate

A.R. = $\%\Delta$ C/decade of time

XX. Decibels

$$db = 20 \log \frac{V_1}{V_2}$$

METRIC PREFIXES

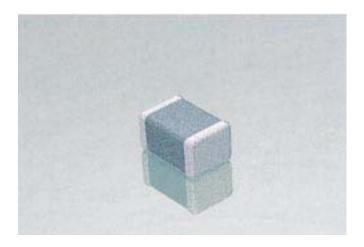

Pico	X 10 ⁻¹²
Nano	X 10 ⁻⁹
Micro	X 10 ⁻⁶
Milli	X 10 ⁻³
Deci	X 10 ⁻¹
Deca	X 10 ⁺¹
Kilo	X 10 ⁺³
Mega	X 10 ⁺⁶
Giga	X 10 ⁺⁹
Tera	X 10 ⁺¹²

How to Order

EXAMPLE: 08055A101JAT2A

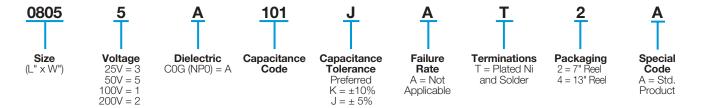
Note: Unmarked product is standard. Marked product is available on special request, please contact AVX. Standard packaging is shown in the individual tables.

Non-standard packaging is available on special request, please contact AVX.


^{*}C&D tolerances for ≤10 pF values.

^{**} Standard Tape and Reel material depends upon chip size and thickness. See individual part tables for tape material type for each capacitance value.

COG (NPO) Dielectric



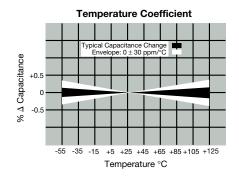
COG (NP0) is the most popular formulation of the "temperature-compensating," EIA Class I ceramic materials. Modern COG (NP0) formulations contain neodymium, samarium and other rare earth oxides.

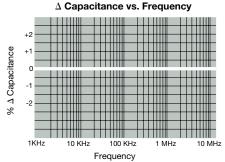
COG (NP0) ceramics offer one of the most stable capacitor dielectrics available. Capacitance change with temperature is 0 $\pm 30 ppm/^{\circ}C$ which is less than $\pm 0.3\%$ Δ C from -55°C to +125°C. Capacitance drift or hysteresis for COG (NP0) ceramics is negligible at less than $\pm 0.05\%$ versus up to $\pm 2\%$ for films. Typical capacitance change with life is less than $\pm 0.1\%$ for COG (NP0), one-fifth that shown by most other dielectrics. COG (NP0) formulations show no aging characteristics.

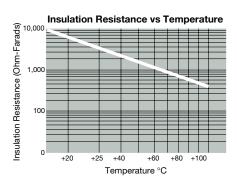
The COG (NP0) formulation usually has a "Q" in excess of 1000 and shows little capacitance or "Q" changes with frequency. Their dielectric absorption is typically less than 0.6% which is similar to mica and most films.

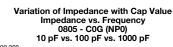
PART NUMBER (see page 3 for complete part number explanation)

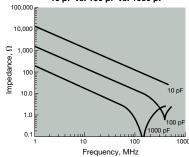
PERFORMANCE CHARACTERISTICS

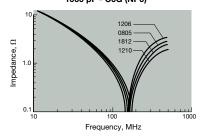

Capacitance Range	0.5 pF to .1 μ F (1.0 \pm 0.2 Vrms, 1kHz, for \leq 100 pF use 1 MHz)
Capacitance Tolerances	Preferred $\pm 5\%$, $\pm 10\%$ others available: $\pm .25$ pF, $\pm .5$ pF, $\pm 1\%$ (≥ 25 pF), $\pm 2\%$ (≥ 13 pF), $\pm 20\%$ For values ≤ 10 pF preferred tolerance is $\pm .5$ pF, also available $\pm .25$ pF.
Operating Temperature Range	-55°C to +125°C
Temperature Characteristic	$0 \pm 30 \text{ ppm/}^{\circ}\text{C}$ (EIA COG)
Voltage Ratings	25, 50, 100 & 200 VDC (+125°C)
Dissipation Factor and "Q"	For values >30 pF: 0.1% max. (+25°C and +125°C) For values ≤30 pF: "Q" = 400 + 20 x C (C in pF)
Insulation Resistance (+25°C, RVDC)	100,000 megohms min. or 1000 M Ω - μF min., whichever is less
Insulation Resistance (+125°C, RVDC)	10,000 megohms min. or 100 M Ω - μF min., whichever is less
Dielectric Strength	250% of rated voltage for 5 seconds at 50 mamp max. current
Test Voltage	1 ± 0.2 Vrms
Test Frequency	For values ≤100 pF: 1 MHz For values >100 pF: 1 KHz

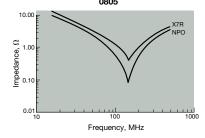



COG (NP0) Dielectric


Typical Characteristic Curves**







Variation of Impedance with Chip Size Impedance vs. Frequency 1000 pF - C0G (NP0)

Variation of Impedance with Ceramic Formulation Impedance vs. Frequency 1000 pF - COG (NP0) vs X7R 0805

SUMMARY OF CAPACITANCE RANGES VS. CHIP SIZE

Style	25V	50V	100V	200V
0402*	0.5pF - 220pF	0.5pF - 120pF	_	_
0504	0.5pF - 330pF	0.5pF - 150pF	0.5pF - 68pF	_
0603*	0.5pF - 1nF	0.5pF - 1nF	0.5pF - 330pF	_
0805*	0.5pF - 4.7nF	0.5pF - 2.2nF	0.5pF - 1nF	0.5pF - 470pF
1206*	0.5pF - 10nF	0.5pF - 4.7nF	0.5pF - 2.2nF	0.5pF - 1nF
1210*	560pF - 10nF	560pF - 10nF	560pF - 3.9nF	560pF - 1.5nF
1505	_	10pF - 1.5nF	10pF - 820pF	10pF - 560pF
1808	\rightarrow	1nF - 4.7nF	1nF - 3.9nF	1nF - 2.2nF
1812*	1nF - 15nF	1nF - 10nF	1nF - 4.7nF	1nF - 3.3nF
1825*	\rightarrow	1nF - 22nF	1nF - 12nF	1nF - 6.8nF
2220	\rightarrow	4.7nF - 47nF	4.7nF - 39nF	3.3nF - 27nF
2225	\rightarrow	1nF - 100nF	1nF - 39nF	1nF - 39nF

^{*} Standard Sizes
** For additional information on performance changes with operating conditions consult AVX's software SpiCap.

C0G (NP0) Dielectric

PREFERRED SIZES ARE SHADED

SIZE 0402* 0603* 0805 0504* 1206 1505 Standard Reel Packaging All Paper All Embossed All Paper Paper/Embossed Paper/Embossed All Embossed 1.00 ± .10 (.040 ± .004) 1.60 ± .15 (.063 ± .006) 2.01 ± .20 (.079 ± .008) 3.20 ± .20 (.126 ± .008) (L) Length .50 ± .10 (.020 ± .004) 1.02 ± .25 (.040 ± .010) .81 ± .15 (.032 ± .006) 1.25 ± .20 (.049 ± .008) 1.60 ± .20 (.063 ± .008) 1.27 ± .25 (.050 ± .010) MM (W) Width 1.30 (.051) (T) Max. Thickness (.035) (.059) (.050) (.040).38 ± .13 (.015 ± .005) .35 ± .15 (.014 ± .006) .50 ± .25 (.020 ± .010) .50 ± .25 (.020 ± .010) .50 ± .25 (.020 ± .010) .25 ± .15 (.010 ± .006) (t) Terminal 50 100 200 100 25 50 100 50 0.5 1.0 1.2 1.5 Сар 1.8 2.2 2.7 3.3 3.9 5.6 8.2 10 15 18 22 27 33 39 47 56 68 82 100 120 180 220 270 330 390 470 560 680 820 1000 1200 1500 1800 2200 2700 3300 3900 4700 5600 6800 8200 10000

*Reflow soldering only.

 $\ensuremath{\mathsf{NOTES}}\xspace$: For higher voltage chips, see pages 20 and 21.

= Paper Tape

= Embossed Tape

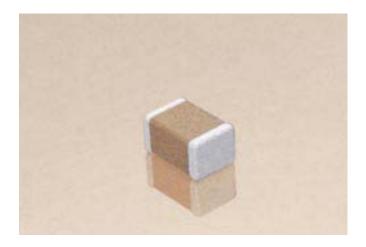
C0G (NP0) Dielectric

Capacitance Range

PREFERRED SIZES ARE SHADED

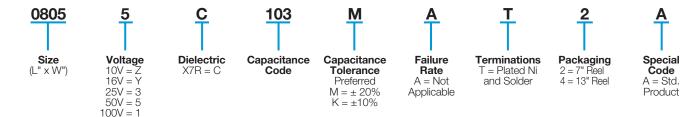
SIZE		12	210			1808*			18	12*			1825*			2220*			2225*	
Standard Reel Packaging	F	aper/E	mbos	sed	All	Emboss	ed		All Eml	osse	d	All	Emboss	sed	All	Emboss	ed	All	Embos	sed
(L) Length MM (in.)			± .20 ± .008)			1.57 ± .25 80 ± .010	١.		4.50 ±				4.50 ± .30			5.7 ± .40 .225 ± .01			5.72 ± .2 .225 ± .0	
(W) Width			± .20			2.03 ± .25)		3.20 ±				$6.40 \pm .40$,	5.0 ± .40			6.35 ± .2	
(in.)			± .008)		(.0	010. ± 080)		(.126 ±			(.	252 ± .01	6)	(.	.197 ± .01	6)	(.250 ± .0	10)
(T) Max. Thickness MM (in.)			.70 067)			1.52 (.060)			1.7				1.70 (.067)			2.30 (.090)			1.70 (.067)	
(t) Terminal MM			± .25 ± .010)			.64 ± .39 .025 ± .015	\		.61 ±			,	.61 ± .36		,	.64 ± .39		,	.64 ± .3	
(in.)	25	50	100	200	50	100	200	25	50 (.U24 ±	100	200	50	100	200	50	.025 ± .01:	200	50	100	200
Cap 560 (pF) 680 820																L	>		V	V
1000 1200 1500																				
1800 2200 2700																				
3300 3900 4700											////									
5600 6800 8200																				
Cap010 (μF) .012 .015																				
.018 .022 .027																				
.033 .039 .047																				
.068 .082 .1																				

*Reflow soldering only.


NOTES: For higher voltage chips, see pages 20 and 21.

= Paper Tape

= Embossed Tape

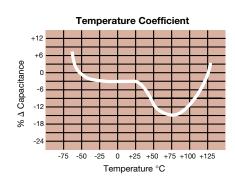


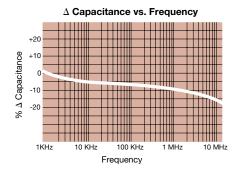
X7R formulations are called "temperature stable" ceramics and fall into EIA Class II materials. X7R is the most popular of these intermediate dielectric constant materials. Its temperature variation of capacitance is within $\pm 15\%$ from -55° C to $+125^{\circ}$ C. This capacitance change is non-linear.

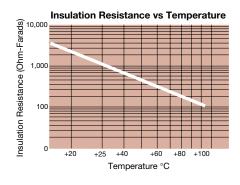
Capacitance for X7R varies under the influence of electrical operating conditions such as voltage and frequency.

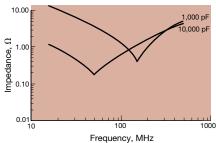
X7R dielectric chip usage covers the broad spectrum of industrial applications where known changes in capacitance due to applied voltages are acceptable.

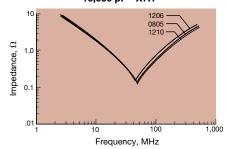
PART NUMBER (see page 3 for complete part number explanation)

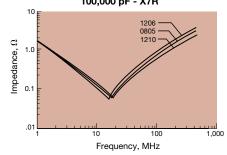

PERFORMANCE CHARACTERISTICS


Capacitance Range	100 pF to 2.2 μ F (1.0 \pm 0.2 Vrms, 1kHz)
Capacitance Tolerances	Preferred ±10%, ±20% others available: ±5%, +80 –20%
Operating Temperature Range	-55°C to +125°C
Temperature Characteristic	±15% (0 VDC)
Voltage Ratings	10, 16, 25, 50, 100 VDC (+125°C)
Dissipation Factor	For 50 volts and 100 volts: 2.5% max. For 25 volts: 3.0% max. For 16 volts: 3.5% max. For 10 volts: 5% max.
Insulation Resistance (+25°C, RVDC)	100,000 megohms min. or 1000 M Ω - μF min., whichever is less
Insulation Resistance (+125°C, RVDC)	10,000 megohms min. or 100 M Ω - μF min., whichever is less
Dielectric Strength	250% of rated voltage for 5 seconds at 50 mamp max. current
Test Voltage	1.0 ± 0.2 Vrms
Test Frequency	1 KHz








Variation of Impedance with Cap Value Impedance vs. Frequency 1,000 pF vs. 10,000 pF - X7R 0805

Variation of Impedance with Chip Size Impedance vs. Frequency 10,000 pF - X7R

Variation of Impedance with Chip Size Impedance vs. Frequency 100,000 pF - X7R

SUMMARY OF CAPACITANCE RANGES VS. CHIP SIZE

Style	10V	16V	25V	50V	100V
0402*	_	100pF - 47nF	100pF - 6.8nF	100pF - 3.9nF	_
0504	_			100pF01μF	100pF - 3.3nF
0603*	100pF - 0.22μF	100pF - 0.1μF	100pF - 47nF	100pF - 15nF	100pF - 4.7nF
0805*	100pF - 2.2μF	100pF - 0.47μF	100pF - 0.22μF	100pF - 0.1μF	100pF - 22nF
1206*	1.5μF - 4.7μF	1nF - 1μF	1nF - 1.0μF	1nF - 0.22μF	1nF - 0.1μF
1210*	\rightarrow	1nF - 1.8μF	1nF - 1μF	1nF - 0.22μF	1nF - 0.1µF
1505	\rightarrow	\rightarrow	\rightarrow	1nF - 0.1μF	1nF - 27nF
1808	\rightarrow	\rightarrow	10nF - 0.33μF	10nF - 0.33μF	10nF - 0.1μF
1812*	\rightarrow	\rightarrow	\rightarrow	10nF - 1μF	10nF - 0.47μF
1825*	\rightarrow	\rightarrow	\rightarrow	10nF - 1μF	10nF - 0.47μF
2220	\rightarrow	\rightarrow	\rightarrow	10nF - 1.5μF	10nF - 1.2μF
2225	\rightarrow	\rightarrow	\rightarrow	10nF - 2.2μF	10nF - 1.5μF

Standard Sizes
For additional information on performance changes with operating conditions consult AVX's software SpiCap.

PREFERRED SIZES ARE SHADED

				ı				=														_
SIZE		0402*		05	604*			060	3*			0	805					1206			15	05
Standard Reel Packaging		All Pape	r	All Em	bossed		,	All Pa	per		Р	aper/l	Embo	ssed		F		r/Emb		t	All Emb	
(L) Length MM (in.)		1.00 ± .10 .040 ± .00	4)	(.050	± .25 ± .010)		(.0	.60 ± 163 ± .	006)			(.079	1 ± .20 1 ± .008	3)			(.1	.20 ± .2 26 ± .0	08)		3.81 ± 150.)	: .010)
(W) Width MM (in.)		.50 ± .10 .020 ± .00	4)	(.040	± .25 ± .010)		0.)	.81 ± .)32 ± .	006)			(.049	5 ± .20 1 ± .008	3)			1 (.0	.60 ± .2 63 ± .0	20 08)		1.27 ± 0.050	: .010)
(T) Max. Thickness MM (in.)		.60 (.024)		(.0	.02 (40)			.90 (.035)			(.	1.30 051)					1.50 (.059)			1.2 (.05	50)
(t) Terminal MM (in.)		.25 ± .15 .000 ± .000	6)		± .13 ± .005)			.35 ± .)14 ± .					± .25 ± .010	0)				50 ± .2 20 ± .0			.50 ±	
WVDC	16	25	50	50	100	10	16	25	50	100	10	16	25	50	100	10	16	25	50	100	50	100
Cap 100 (pF) 120 150																	,					W
180 220 270																			_			∫ ↓'
330 390 470																				4	7	
560 680 820																						
1000 1200 1500																						
1800 2200 2700																						
3300 3900 4700					/////////																	
5600 6800 8200																						
Cap010 (μF) .012 .015				(/////////											///							
.018 .022 .027																						
.033 .039 .047																						
.056 .068 .082																						
.10 .12 .15																						
.18 .22 .27																						
.33 .47 .56																						
.68 .82 1.0																						
1.2 1.5 1.8																						
2.2 4.7																						

^{*}Reflow soldering only.

NOTES: For higher voltage chips, see pages 20 and 21.

= Paper Tape

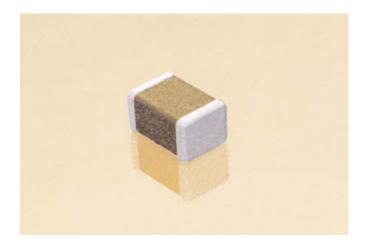
= Embossed Tape

Capacitance Range

PREFERRED SIZES ARE SHADED

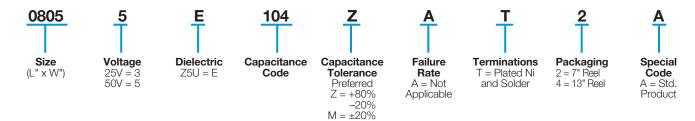
SIZE		12	10			1808*		18	12*	182	25*		2220*		222	.5*
Standard Reel Packaging	Pa	aper/Ei	mboss	ed	Al	l Embos	sed	All Em	bossed	All Emb	oossed	А	II Emboss	sed	All Emb	ossed
(L) Length MM (in.)			± .20 ± .008)			4.57 ± .25			± .30 ± .012)	4.50 : (.177 ±			5.7 ± 0.4 (.225 ± .01		5.72 ± (.225 ±	
(W) Width MM (in.)		2.50	± .20 ± .008)			2.03 ± .25	5	3.20	± .20 ± .008)	6.40 : (.252 ±	± .40		5.0 ± 0.4 (.197 ± .01		6.35 ±	± .25
(T) Max. Thickness MM (in.)			70 67)			1.52 (.060)			.70 067)	1.7			2.30 (.090)		1.7 (.06	
(t) Terminal MM (in.)			± .25 ± .010)		(.64 ± .39			± .36 ± .014)	.61 ± (.024 ±			.64 ± .39 (.025 ± .01		.64 ± (.025 ±	
WVDC	16	25	50	100	25	50	100	50	100	50	100	50	100	200	50	100
Cap 1000 (pF) 1200 1500														*	≪V	
1800 2200 2700														\int		TT
3300 3900 4700														t		
5600 6800 8200																
Cap010 (μF) .012 .015																
.018 .022 .027																
.033 .039 .047																
.056 .068 .082																
.10 .12 .15																
.18 .22 .27																
.33 .39 .47					(/////	/////	1							/////		
.56 .68 .82																
1.0 1.2 1.5								(////////		(/////////						
1.8 2.2																

^{*}Reflow soldering only.


 $\ensuremath{\mathsf{NOTES}}\xspace$ For higher voltage chips, see pages 20 and 21.

= Paper Tape

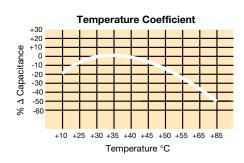
= Embossed Tape

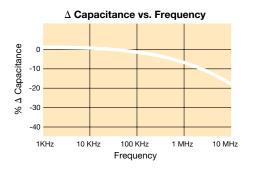


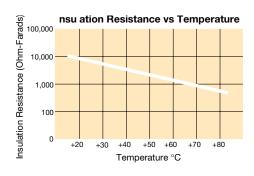
Z5U formulations are "general-purpose" ceramics which are meant primarily for use in limited temperature applications where small size and cost are important. Z5U show wide variations in capacitance under influence of environmental and electrical operating conditions.

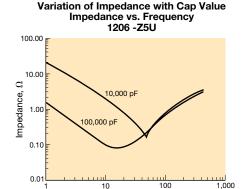
Despite their capacitance instability, Z5U formulations are very popular because of their small size, low ESL, low ESR and excellent frequency response. These features are particularly important for decoupling application where only a minimum capacitance value is required.

PART NUMBER (see page 3 for complete part number explanation)

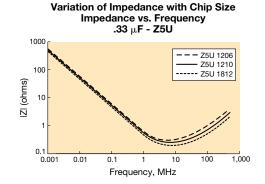


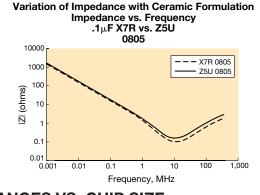

PERFORMANCE CHARACTERISTICS


Capacitance Range	0.01 μF to 1.0 μF
Capacitance Tolerances	Preferred +80 -20% others available: ±20%, +100 -0%
Operating Temperature Range	+10°C to +85°C
Temperature Characteristic	+22% to -56% max.
Voltage Ratings	25 and 50VDC (+85°C)
Dissipation Factor	4% max.
Insulation Resistance (+25°C, RVDC)	10,000 megohms min. or 1000 $M\Omega$ - μF min., whichever is less
Dielectric Strength	250% of rated voltage for 5 seconds at 50 mamp max. current
Test Voltage	$0.5 \pm 0.2 \text{ Vrms}$
Test Frequency	1 KHz



Typical Characteristic Curves**





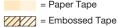
Frequency, MHz

SUMMARY OF CAPACITANCE RANGES VS. CHIP SIZE

Style	25V	50V
0603*	.01μF047μF	.01μF027μF
0805*	.01μF12μF	.01μF - 0.1μF
1206*	.01μF33μF	.01μF33μF
1210*	.01µF56µF	.01μF47μF
1808	.01μF56μF	.01μF47μF
1812*	.01μF - 1.0μF	.01μF - 1.0μF
1825*	.01μF - 1.0μF	.01μF - 1.0μF
2225	.01μF - 1.0μF	.01μF - 1.0μF

^{*} Standard Sizes

^{**} For additional information on performance changes with operating conditions consult AVX's software SpiCap.

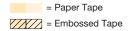


PREFERRED SIZES ARE SHADED

All P 1.60: (.063 ± (.032 ± (.032 ±	± .006) ± .15 ± .006) 00 35) ± .15	± 0.049 1.3 0.0	# .20 ± .20 ± .008) ± .20 ± .20 ± .008) 30 51)	120 Paper/En 3.20 = (.126 ± 1.60 = (.063 ± (.05 5.50 ±	nbossed ± .20 .008) ± .20 .008) 50 69)	3.20 (.126 = 2.50 (.098 =	± .20 ± .008) ± .20 ± .008) ± .20 £ .008) 70
1.60 : (.063 ± (.032 ±	± .15 ± .006) ± .15 ± .006) 00 335) ± .15 ± .006)	2.01 (.079 ± 1.25 (.049 ± 1.: (.00	± .20 ± .008) ± .20 ± .008) 30 51) ± .25	3.20 = (.126 ± 1.60 = (.063 ± (.05 ± 0.05 ±	£ .20 .008) £ .20 .008) 60 69)	3.20 (.126 = 2.50 (.098 =	± .20 ± .008) ± .20 ± .008)
(.063 ± .81 ± (.032 ± (.032 ± .9 (.032 ± .035 ± (.014 ± .034 ± .035 ± .0	± .006) ± .15 ± .006) 00 35) ± .15 ± .006)	(.079 ± 1.25 (.049 ± 1.3 (.03) (.03) (.020 ± 1.3	± .008) ± .20 ± .008) 30 51) ± .25	(.126 ± 1.60 = (.063 ± 1.5 (.05	± .20 ± .20 ± .008)	(.126 ± 2.50 (.098 ± 1. (.0	± .008) ± .20 ± .008)
(.032 ± .9 (.00 .35 ± (.014 ±	± .006) 00 35) ± .15 ± .006)	1.049 ± 0.049 ± 1.000 ± 0.000	± .008) 30 51) ± .25	(.063 ± 1.5 (.05	.008) 50 59)	(.098 <u>-</u> 1. (.0	± .008) 70
.00.) ± 35. ± 0.014.	35) ± .15 ± .006)	.50 ± 0.020 ± 0.020.	51) ± .25	(.05 ± 50.	59)	(.0	
(.014 ±	± .006)	(.020 ±			O.E.		
25	50	25		$(.020 \pm$.010)		± .25 ± .010)
			50	25	50	25	50
							W
							Ţ
					-	t	
				////////			
	у.						

*Reflow soldering only.

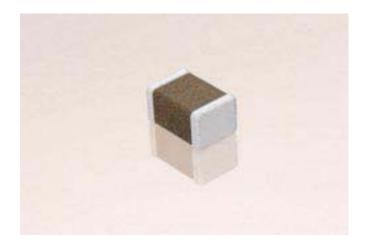
NOTES: For low profile chips, see page 19.



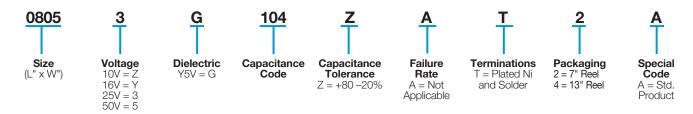
PREFERRED SIZES ARE SHADED

			_	п	_	П	\prod		
SIZE		180		L 40	 312*	182	<u></u>		 2 25 *
Standard Reel Page	rkaning	All Emb			nbossed	All Emb			nbossed
(L) Length	MM (in.)	04.57 ±	± .25	4.50	± .30 ± .012)	4.50 ± .30 (.177 ± .012)		5.72	± .25 ± .010)
(W) Width	MM (in.)	2.03 ± (.080 ±	.25	3.20 (.126	± .20 ± .008)	6.40 (.252 ±	± .40 : .016)	6.35 (.250	± .25 ± .010)
(T) Max. Thickness	MM (in.)	1.5	0)	(.(.70 067)	1.7	67)	0.)	.70 067)
(t) Terminal	MM (in.)	.64 ± (.025 ±			± .36 ± .014)	.61 ± (.024 ±			± .39 ± .015)
WVDC		25	50	25	50	25	50	25	50
Cap (µF)	.010 .012								
	.015 .018 .022								
	.027 .033 .039								
	.047 .056 .068								
	.082 .10 .12								
	.15 .18 .22								
	.27 .33 .39								
	.47 .56 .68		////////						
	.82 1.0 1.5								

*Reflow soldering only.


NOTES: For low profile chips, see page 19.

Y5V Dielectric



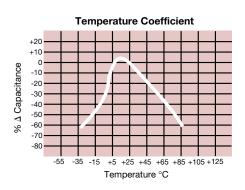
Y5V formulations are for general-purpose use in a limited temperature range. They have a wide temperature characteristic of +22% -82% capacitance change over the operating temperature range of -30°C to +85°C.

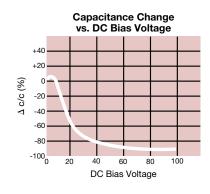
Y5V's high dielectric constant allows the manufacture of the highest capacitance value in a given case size.

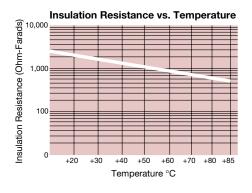
These characteristics make Y5V ideal for decoupling applications within limited temperature range.

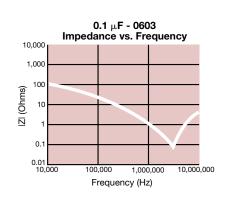
PART NUMBER (see page 3 for complete part number explanation)

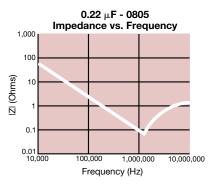
PERFORMANCE CHARACTERISTICS

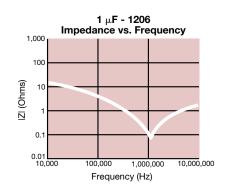

Capacitance Range	2200 pF to 22 μF
Capacitance Tolerances	+80 -20%
Operating Temperature Range	-30°C to +85°C
Temperature Characteristic	+22% to -82% max. within operating temperature
Voltage Ratings	10, 16, 25 and 50 VDC (+85°C)
Dissipation Factor	For 50 volts: 5.0% max. For 16 and 25 volts: 7% max. For 10 volts: 10% max.
Insulation Resistance (+25°C, RVDC)	10,000 megohms min. or 1000 M Ω - μF min., whichever is less
Dielectric Strength	250% of rated voltage for 5 seconds at 50 mamp max. current
Test Voltage	1.0 Vrms ± 0.2 Vrms
Test Frequency	1 KHz




Y5V Dielectric







SUMMARY OF CAPACITANCE RANGES VS. CHIP SIZE

Style	10V	16V	25V	50V
0402*	2.2nF - 0.1µF	2.2nF - 0.1µF	2.2nF - 22nF	2.2nF - 10nF
0603*	2.2nF - 1µF	2.2nF - 0.33µF	2.2nF - 0.22µF	2.2nF - 56nF
0805*	10nF - 4.7μF	10nF - 2.2μF	10nF - 1μF	10nF - 0.33μF
1206*	10nF - 10μF	10nF - 4.7μF	10nF - 2.2μF	10nF - 1μF
1210*	10nF - 22µF	0.1μF - 10μF	0.1μF - 4.7μF	0.1μF - 1μF
1812*	\rightarrow	\rightarrow	0.15μF - 1.5μF	1.5nF - 1.5μF
1825*	→	\rightarrow	0.47μF - 1.5μF	0.47μF - 1.5μF
2220	_	_	_	1μF - 1.5μF
2225	\rightarrow	\rightarrow	0.68µF - 2.2µF	0.68μF - 1.5μF

^{*} Standard Sizes

^{**} For additional information on performance changes with operating conditions consult AVX's software SpiCap.

Y5V Dielectric

PREFERRED SIZES ARE SHADED

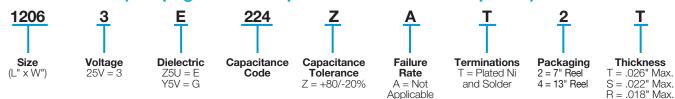
							1			п	1			0	_												
SIZE		040	02*			060	03*			08	05			12	206			12	10		18	12*	18	25*	2220*	222	25*
Standard Reel Packaging		All P	aper			All P	aper		Pap	er/Er	nbo	ssed	Pap	oer/E	mbo	ssed	Pap	er/Er	mbos	sed	All Em	bossed	All Em	bossed	All Embossed	All Emb	ossed
(L) Length MM (in.)		1.00 .040 ±			(1.60 .063 :	± .15			2.01 .079 :				3.20	± .20				± .20 ± .008)		± .30 ± .012)		± .30 ± .016)	5.7 ± 0.4 (.225 ± .016)	5.72 : (.225 ±	
(W) Width MM (in.)			± .10				± .15			1.25 .049	± .20)			± .20	1		2.50	± .20 ± .008		3.20	± .20 ± .008)	6.40	± .40 ± .016)	5.0 ± 0.4 (.197 ± .016)	6.35 : (.250 ±	± .25
(T) Max. Thickness MM (in.)		.0.)	60 24)			9.	90 35)				30 51)			1.	50 59)			1.7	70 67)		1. (.0	70 67)		70 67)	2.30 (.090)	1.7	70 67)
(t) Terminal MM (in.)	(.	± 25. ± 010.	± .15 ± .006	3)	(.35 : : 014.	± .15 ± .006	6)	(.50 : 020.	± .25 ± .01		(.50 .020	± .25 ± .010	D)		020 ±	± .25 ± .010			± .36 ± .014)		± .36 ± .014)	.64 ± .39 (.025 ± .015)	.64 ± (.025 ±	
WVDC	10	16	25	50	10	16	25	50	10	16	25	50	10	16	25	50	10	16	25	50	25	50	25	50	50	25	50
Cap 2200 (pF) 2700 3300																										W	*
3900 4700 5600																										الرا	1
6800 8200																									t		
Cap .01 (µF) .012 .015																											
.018 .022 .027																											
.033 .039 .047																											
.056																											
.082																											
.12 .15												///									7////	/////					
.18 .22 .27																											
.33																				///							
.56										///																	
.68 .82														///													
1.0 1.2 1.5																				///				//////			
1.8 2.2 2.7									///																		
3.3 3.9 4.7																											
5.6 6.8 8.2									///										///								
10.0 12.0 15.0																											
18.0 22.0																											

*Reflow soldering only.

NOTES: For low profile product, see page 19.

= Paper Tape

= Embossed Tape



Low Profile Chips

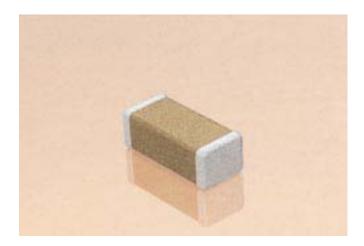
PART NUMBER (see page 3 for complete information and options)

PERFORMANCE CHARACTERISTICS

Capacitance Range	Z5U: .01 – .33μF; Y5V: .01 – .47μF
Capacitance Tolerances	+80, -20%
Operating Temperature Range	Z5U: +10°C to +85°C; Y5V: -30°C to +85°C
Temperature Characteristic	Z5U: +22%, -56%; Y5V: +22%, -82%
Voltage Ratings	25 VDC
Dissipation Factor 25°C, .5 Vrms, 1kHz	Z5U: 4%; Y5V: 7%
Insulation Resistance	10,000 megohms min. or 1000 M Ω - μF whichever is less
Dielectric Strength for 5 seconds at 50 mamp max. current	250% of rated VDC
Test Voltage	Z5U: 0.5 ± 0.2 Vrms Y5V: 1.0 Vrms ± 0.2 Vrms
Test Frequency	1 KHz

CAPACITANCE VALUES FOR VARIOUS THICKNESSES

Z5U Y5V


SIZE		0805			1206				1210		
(L) Length	MM (in.)				(.1	3.2 ± .2 126 ± .008	3)	3.2 ± .2 (.126 ± .008)			
(W) Width	MM (in.)	1.25 ± .20 (.049 ± .008)			(.0	1.6 ± .2 063 ± .008	3)	(.	2.5 ± .2 (.098 ± .008)		
(t) Terminal	MM (in.)		.50 ± .25 020 ± .01			.50 ± .25)20 ± .01(0)	(.	.50 ± .25 020 ± .010	0)	
(T) Thickness Max.	MM (in.)	.46 (.018)	.56 (.022)	.66 (.026)	.46 (.018)	.56 (.022)	.66 (.026)	.46 (.018)	.56 (.022)	.66 (.026)	
Cap (µF)	.01 .012 .015										
	.018 .022 .027										
	.033 .039 .047										
	.056 .068 .082										
	.1 .12 .15										
	.18 .22 .27										
	.33 .39 .47										
=	Pape	r Tape		•	•	•			•	•	

SIZE			0805			1206			1210		
(L) Length	MM (in.)		2.01 ± .20 079 ± .00		(.1	3.2 ± .2 126 ± .008	3)	3.2 ± .2 (.126 ± .008)			
(W) Width	MM (in.)	1.25 ± .20 (.049 ± .008)			0.)	1.6 ± .2 063 ± .008	3)	2.5 ± .2 (.098 ± .008)			
(t) Terminal	MM (in.)	(.	.50 ± .25 .020 ± .01			.50 ± .25)20 ± .010	0)		.50 ± .25 .20 ± .010	0)	
(T) Thickness Max.	MM (in.)	.46 (.018)	.56 (.022)	.66 (.026)	.46 (.018)	.56 (.022)	.66 (.026)	.46 (.018)	.56 (.022)	.66 (.026)	
Cap (µF)	.01 .012 .015										
	.018 .022 .027										
	.033 .039 .047										
	.056 .068 .082										
	.1 .12 .15										
	.18 .22 .27										
	.33 .39 .47										
								=	Paper :	Tape	

High Voltage Chips

For 500V to 5000V Applications

High value, low leakage and small size are difficult parameters to obtain in capacitors for high voltage systems. AVX special high voltage MLC chips capacitors meet these performance characteristics and are designed for applications such as snubbers in high frequency power converters, resonators in SMPS, and high voltage coupling/DC blocking. These high voltage chip designs exhibit low ESRs at high frequencies.

High voltage chips are typically larger than standard voltage rated chips. These larger sizes require that special precautions be taken in applying these chips in surface mount assemblies. This is due to differences in the coefficient of thermal expansion (CTE) between the substrate materials and chip capacitors.

PART NUMBER (see page 3 for complete information and options)

1808	Α	Α	271	K	Α	1	1	Α
\top	T	T	T	T	T	Ţ	T	Ţ
AVX	Voltage	Temperature	Capacitance	Capacitance	Failure	Termination	Packaging	Special
Style	500V = 7	Coefficient	Code	Tolerance	Rate	1= Pd/Ag	1 = 7" Reel	Code
1206	600V = C	COG = A	(2 significant digits	COG: $J = \pm 5\%$	A=Not	T= Plated Ni	Embossed	A = Standard
1210	1000V = A	X7R = C	+ no. of zeros)	$K = \pm 10\%$	applicable	and Solder	Tape	
1808	1500V = S		Examples:	$M = \pm 20\%$			3 = 13" Reel	
1812	2000V = G			X7R: K= ±10%			Embossed	
1825	2500V = W		100pF = 101	$M = \pm 20\%$			Tape	
2225	3000V = H		1,000pF = 102	Z = +80%			9 = Bulk	
3640	4000V = J		2,000pF = 223	- 20%				
	5000V = K	22	0,000pF = 224					
			$1\mu F = 105$					

High Voltage Chips

For 500V to 5000V Applications

C0G (NP0) Dielectric

PERFORMANCE CHARACTERISTICS

Capacitance Range	100 pF to .047 μF
	(25°C, 1.0 ±0.2 Vrms at 1kHz)
Capacitance Tolerances	±5%, ±10%, ±20%
Dissipation Factor	0.1% max. (+25°C, 1.0 ±0.2 Vrms, 1kHz)
Operating Temperature Range	−55°C to +125°C
Temperature Characteristic	0 ±30 ppm/°C (0 VDC)
Voltage Ratings	500, 600, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125°C)
Insulation Resistance (+25°C, at 500 VDC)	100,000 megohms min. or 1000 M Ω - μF min., whichever is less
Insulation Resistance (+125°C, at 500 VDC)	10,000 megohms min. or 100 M Ω - μF min., whichever is less
Dielectric Strength	120% rated voltage for 5 seconds at 50 mamp max. current
Thickness	Dependent upon size, voltage, and capacitance value

COG (NPO) MAXIMUM CAPACITANCE VALUES

VOLTAGE	1206	1210	1808	1812	1825	2225	3640
500	680 pF	1500 pF	3300 pF	5600 pF	.012 μF	.018 μF	
600	680 pF	1500 pF	3300 pF	5600 pF	.012 μF	.018 µF	.047 µF
1000	330 pF	680 pF	1500 pF	2200 pF	5600 pF	8200 pF	.018 µF
1500	120 pF	270 pF	330 pF	560 pF	1500 pF	1800 pF	5600 pF
2000	68 pF	120 pF	270 pF	470 pF	1200 pF	1500 pF	4700 pF
2500	_		100 pF	220 pF	560 pF	820 pF	2700 pF
3000			82 pF	180 pF	270 pF	680 pF	2200 pF
4000					_	_	1000 pF
5000	_	_	_	_	_	_	680 pF

X7R Dielectric

PERFORMANCE CHARACTERISTICS

1000 pF to 0.56 μF (25°C, 1.0 ±0.2 Vrms at 1k Hz)
±10%, ±20%, +80% -20%
2.5% max. (+25°C, 1.0 ±0.2 Vrms, 1kHz)
−55°C to +125°C
±15% (0 VDC)
500, 600, 1000, 1500, 2000, 2500, 3000 & 4000 VDC (+125°C)
100,000 megohms min. or 1000 M Ω - μF min., whichever is less
10,000 megohms min. or 100 M Ω - μF min., whichever is less
120% rated voltage for 5 seconds at 50 mamp max. current
Dependent upon size, voltage, and capacitance value

X7R MAXIMUM CAPACITANCE VALUES

VOLTAGE	1206	1210	1808	1812	1825	2225	3640
500	.015 µF	.027 µF	_	.056 µF	_	_	_
600	.015 µF	.027 µF	.039 µF	.068 µF	.15 µF	.22 µF	.56 µF
1000	4700 pF	8200 pF	.015 µF	.027 µF	.068 µF	.082 µF	.22 µF
1500	1200 pF	2700 pF	2700 pF	5600 pF	.012 μF	.018 µF	.056 µF
2000	470 pF	820 pF	1500 pF	3300 pF	6800 pF	.010 μF	.027 µF
2500	_	_	1200 pF	2200 pF	5600 pF	8200 pF	.022 µF
3000	_	_	_	_	_	4700 pF	.018 µF
4000	_	_	_	_	_	_	5600 pF

General Specifications

THERMAL SHOCK

Specification

Appearance

No visual defects

Capacitance Variation

 $\stackrel{COG}{\text{COG}}$ (NPO): \pm 2.5% or \pm .25pF, whichever is greater X7R: \leq \pm 7.5% Z5U: \leq \pm 20% Y5V: \leq \pm 20%

Q, Tan Delta

To meet initial requirement

Insulation Resistance

COG (NP0), X7R: To meet initial requirement Z5U, Y5V: ≥ Initial Value x 0.1

Dielectric Strength

No problem observed

Measuring Conditions

Step	Temperature °C	Time (minutes)
1	COG (NP0), X7R: -55° ± 2° Z5U: +10° ± 2° Y5V: -30° ± 2°	30 ± 3
2	Room Temperature	# 3
3	COG (NPO), X7R: +125° ± 2 Z5U, Y5V: +85° ± 2°	° 30 ± 3
4	Room Temperature	#3

Repeat for 5 cycles and measure after 48 hours \pm 4 hours (24 hours for COG (NP0)) at room temperature.

IMMERSION

Specification

Appearance

No visual defects

Capacitance Variation

COG (NP0): \pm 2.5% or \pm .25pF, whichever is greater X7R: \leq \pm 7.5% Z5U: \leq \pm 20% Y5V: \leq \pm 20%

Q, Tan Delta

To meet initial requirement

Insulation Resistance

COG (NP0), X7R: To meet initial requirement Z5U, Y5V: ≥ Initial Value x 0.1

Dielectric Strength

No problem observed

Measuring Conditions

Step	Temperature °C	Time (minutes)
1	+65 +5/-0 Pure Water	15 ± 2
2	0 ± 3 NaCl solution	15 ± 2

Repeat cycle 2 times and wash with water and dry. Store at room temperature for 48 ± 4 hours (24 hours for COG (NPO)) and measure.

MOISTURE RESISTANCE

Specification

Appearance

No visual defects

Capacitance Variation

COG (NP0): ± 5% or ± .5pF, whichever is greater X7R: ≤ ± 10% Z5U: ≤ ± 30% Y5V: ≤ ± 30%

Q. Tan Delta

Insulation Resistance

≥ Initial Value x 0.3

Measuring Conditions

Step	Temp. °C	Humidity %	Time (hrs)
1	+25->+65	90-98	2.5
2	+65	90-98	3.0
3	+65->+25	80-98	2.5
4	+25->+65	90-98	2.5
5	+65	90-98	3.0
6	+65->+25	80-98	2.5
7	+25	90-98	2.0
7a	-10	uncontrolled	_
7b	+25	90-98	_

Repeat 20 cycles (1-7) and store for 48 hours (24 hours for COG (NPO)) at room temperature before measuring. Steps 7a & 7b are done on any 5 out of first 9 cycles.

General Specifications

STEADY STATE HUMIDITY (No Load)

Specification

Appearance

No visual defects

Capacitance Variation

COG (NP0): ± 5% or ± .5pF, whichever is greater X7R: ≤ ± 10% Z5U: ≤ ± 30% Y5V: ≤ ± 30%

Q. Tan Delta

Insulation Resistance

≥ Initial Value x 0.3

Measuring Conditions

Store at $85 \pm 5\%$ relative humidity and 85° C for 1000 hours, without voltage. Remove from test chamber and stabilize at room temperature and humidity for 48 ± 4 hours (24 ± 2 hours for COG (NP0)) before measuring.

Charge and discharge currents must be less than 50ma.

LOAD HUMIDITY

Specification

Appearance

No visual defects

Capacitance Variation

COG (NP0): \pm 5% or \pm .5pF, whichever is greater X7R: \leq \pm 10% Z5U: \leq \pm 30% Y5V: \leq \pm 30%

Q, Tan Delta

Insulation Resistance

COG (NP0), X7R: To meet initial value x 0.3 Z5U, Y5V: ≥ Initial Value x 0.1

Charge devices with rated voltage in test chamber set at $85 \pm 5\%$ relative humidity and 85° C for 1000 (+48,-0) hours. Remove from test chamber and stabilize at room temperature and humidity for 48 ± 4 hours (24 ±2 hours for COG (NP0)) before measuring.

Charge and discharge currents must be less than 50ma.

LOAD LIFE

Specification

Appearance

No visual defects

Capacitance Variation

COG (NP0): \pm 3% or \pm .3pF, whichever is greater X7R: \leq \pm 10% Z5U: \leq \pm 30% Y5V: \leq \pm 30%

Q, Tan Delta

Insulation Resistance

COG (NP0), X7R: To meet initial value x 0.3 Z5U, Y5V: ≥ Initial Value x 0.1

Charge devices with twice rated voltage in test chamber set at $+125^{\circ}\text{C} \pm 2^{\circ}\text{C}$ for COG (NP0) and X7R, $+85^{\circ} \pm 2^{\circ}\text{C}$ for Z5U, and Y5V for 1000 (+48,-0) hours. Remove from test chamber and stabilize at room temperature for 48 \pm 4 hours (24 \pm 2 hours for C0G (NP0)) before measuring.

Charge and discharge currents must be less than 50ma.

General Specifications

Mechanical

END TERMINATION ADHERENCE

Specification

No evidence of peeling of end terminal

Measuring Conditions

After soldering devices to circuit board apply 5N (0.51kg f) for 10 ± 1 seconds, please refer to Figure 1.

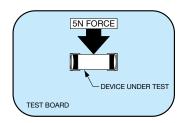


Figure 1. Terminal Adhesion

RESISTANCE TO VIBRATION

Specification

Appearance:

No visual defects

Capacitance

Within specified tolerance

Q. Tan Delta

To meet initial requirement

Insulation Resistance

COG (NP0), X7R \geq Initial Value x 0.3 Z5U, Y5V \geq Initial Value x 0.1

Measuring Conditions

Vibration Frequency

10-2000 Hz

Maximum Acceleration

20G

Swing Width

1.5mm

Test Time

X, Y, Z axis for 2 hours each, total 6 hours of test

SOLDERABILITY

Specification

 \geq 95% of each termination end should be covered with fresh solder

Measuring Conditions

Dip device in eutectic solder at 230 \pm 5°C for 2 \pm .5 seconds

BEND STRENGTH

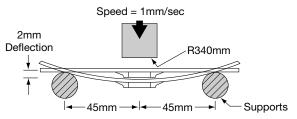


Figure 2. Bend Strength

Specification

Appearance:

No visual defects

Capacitance Variation

COG (NP0): \pm 5% or \pm .5pF, whichever is larger X7R: \leq \pm 12% Z5U: \leq \pm 30% Y5V: \leq \pm 30%

Insulation Resistance

COG (NP0): ≥ Initial Value x 0.3 X7R: ≥ Initial Value x 0.3 Z5U: ≥ Initial Value x 0.1 Y5V: ≥ Initial Value x 0.1

Measuring Conditions

Please refer to Figure 2

Deflection:

2mm

Test Time:

30 seconds

RESISTANCE TO SOLDER HEAT

Specification

Appearance:

No serious defects, <25% leaching of either end terminal

Capacitance Variation

COG (NP0): \pm 2.5% or \pm 2.5pF, whichever is greater X7R: \leq \pm 7.5% Z5U: \leq \pm 20% Y5V: \leq \pm 20%

Q, Tan Delta

To meet initial requirement

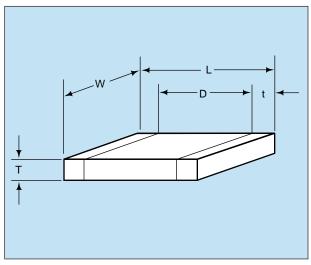
Insulation Resistance

To meet initial requirement

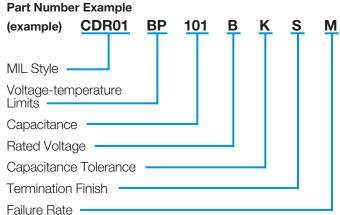
Dielectric Strength

No problem observed

Measuring Conditions


Dip device in eutectic solder at 260°C, for 1 minute. Store at room temperature for 48 hours (24 hours for COG (NPO)) before measuring electrical parameters.

Part sizes larger than 3.20mm x 2.49mm are reheated at 150°C for 30 ±5 seconds before performing test.



Part Number Example

MILITARY DESIGNATION PER MIL-PRF-55681

MIL Style: CDR01, CDR02, CDR03, CDR04, CDR05, CDR06

Voltage Temperature Limits:

BP = 0 ± 30 ppm/°C without voltage; 0 ± 30 ppm/°C with rated voltage from -55°C to +125°C

 $BX = \pm 15\%$ without voltage; +15-25% with rated voltage from -55°C to +125°C

Capacitance: Two digit figures followed by multiplier (number of zeros to be added) e.g., 101 = 100 pF

Rated Voltage: A = 50V, B = 100V

Capacitance Tolerance: J ±5%, K ±10%, M ±20%

Termination Finish:

M = Palladium Silver N = Silver Nickel Gold S = Solder-coated

U = Base Metallization/Barrier Metal/Solder Coated* W = Base Metallization/Barrier Metal/Tinned (Tin or Tin/

Lead Alloy)

*Solder shall have a melting point of 200°C or less.

Failure Rate Level: M = 1.0%, P = .1%, R = .01%, S = .001%

Packaging: Bulk is standard packaging. Tape and reel per RS481 is available upon request.

CROSS REFERENCE: AVX/MIL-PRF-55681/CDR01 THRU CDR06*

Per	AVX	Longeth (L)	\A/; al+la_(\A/\	Thickr	ess (T)		D	Terminatio	n Band (t)
MIL-PRF-55681	MIL-PRF-55681 Style	Length (L)	Width (W)	Max.	Min.	Max.	Min.	Max.	Min.
CDR01	0805	.080 ± .015	.050 ± .015	.055	.020	_	.030	_	.010
CDR02	1805	.180 ± .015	.050 ± .015	.055	.020	_	_	.030	.010
CDR03	1808	.180 ± .015	.080 ± .018	.080	.020	_	_	.030	.010
CDR04	1812	.180 ± .015	.125 ± .015	.080	.020	_	_	.030	.010
CDR05	1825	.180 ^{+.020} 015	.250 +.020 015	.080	.020	_	_	.030	.010
CDR06	2225	.225 ± .020	.250 ± .020	.080	.020	_	_	.030	.010

^{*}For CDR11, 12, 13, and 14 see AVX Microwave Chip Capacitor Catalog

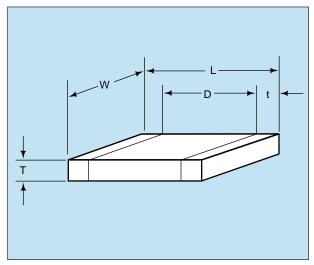
MIL-PRF-55681/Chips Military Part Number Identification CDR01 thru CDR06

CDR01 thru CDR06 to MIL-PRF-55681

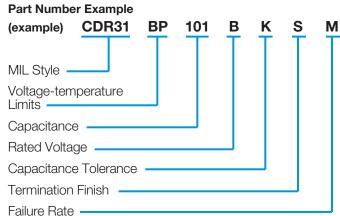
Military Type Designation	Capacitance in pF	Capacitance tolerance	Rated temperature and voltage- temperature limits	WVDC		
AVX Style 0	805/CDR01					
CDR01BP100B CDR01BP120B CDR01BP150B CDR01BP180B CDR01BP220B CDR01BP270B CDR01BP330B CDR01BP390B	10 12 15 18 22 27 33 39	J,K J J,K J J,K	BP BP BP BP BP BP BP	100 100 100 100 100 100 100		
CDR01BP470B CDR01BP560B	47 56	J J,K J	BP BP	100 100		
CDR01BP680B	68	J,K	BP	100		
CDR01BP820B	82	J	BP	100		
CDR01BP101B	100	J,K	BP	100		
CDR01B121B	120	J,K	BP,BX	100		
CDR01B151B	150	J,K	BP,BX	100		
CDR01B181B	180	J,K	BP,BX	100		
CDR01BX221B	220	K,M	BX	100		
CDR01BX271B	270	K	BX	100		
CDR01BX331B	330	K,M	BX	100		
CDR01BX391B	390	K	BX	100		
CDR01BX471B	470	K,M	BX	100		
CDR01BX561B	560	K	BX	100		
CDR01BX681B	680	K,M	BX	100		
CDR01BX821B	820	K	BX	100		
CDR01BX102B	1000	K,M	BX	100		
CDR01BX122B	1200	K	BX	100		
CDR01BX152B	1500	K,M	BX	100		
CDR01BX182B	1800	K	BX	100		
CDR01BX222B	2200	K,M	BX	100		
CDR01BX272B	2700	K	BX	100		
CDR01BX332B	3300	K,M	BX	100		
CDR01BX392A	3900	K	BX	50		
CDR01BX472A	4700	K,M	BX	50		
AVX Style 1	805/CDR02					
CDR02BP221B	220	J,K	BP	100		
CDR02BP271B	270	J	BP	100		
CDR02BX392B	3900	K	BX	100		
CDR02BX472B	4700	K,M	BX	100		
CDR02BX562B	5600	K	BX	100		
CDR02BX682B	6800	K,M	BX	100		
CDR02BX822B	8200	K	BX	100		
CDR02BX103B	10,000	K,M	BX	100		
CDR02BX123A	12,000	K	BX	50		
CDR02BX153A	15,000	K,M	BX	50		
CDR02BX183A	18,000	K	BX	50		
CDR02BX223A	22,000	K,M	BX	50		
Add appropriate failure rate Add appropriate termination finish						

Capacitance Tolerance

Military Type Designation	Capacitance in pF	Capacitance tolerance	Rated temperature and voltage-temperature limits	WVDC
AVX Style 18	308/CDR03			
CDR03BP331B CDR03BP391B CDR03BP471B CDR03BP561B CDR03BP681B CDR03BP821B CDR03BP102B CDR03BX123B CDR03BX153B CDR03BX233B CDR03BX233B CDR03BX273B CDR03BX273B CDR03BX333B CDR03BX333	330 390 470 560 680 820 1000 12,000 15,000 18,000 22,000 27,000 33,000 39,000 47,000	J,K J J,K J,K K,M K,M K,M K,M K,M	BP BP BP BP BP BP BX BX BX BX BX BX BX BX BX	100 100 100 100 100 100 100 100 100 100
CDR03BX563A CDR03BX683A	56,000 68,000	K K,M	BX BX	50 50
AVX Style 18	312/CDR04			
CDR04BP122B CDR04BP152B CDR04BP182B CDR04BP222B CDR04BP272B CDR04BX393B CDR04BX473B CDR04BX473B CDR04BX563B CDR04BX563B CDR04BX104A CDR04BX104A CDR04BX154A CDR04BX154A CDR04BX184A	1200 1500 1800 2200 2700 3300 39,000 47,000 56,000 82,000 100,000 120,000 180,000	J J,K J,K K,M K,M K,M K,M K,M	BP BP BP BP BP BX BX BX BX BX BX BX BX BX	100 100 100 100 100 100 100 100 100 50 50 50 50
AVX Style 18	325/CDR05			
CDR05BP392B CDR05BP472B CDR05BP562B CDR05BX823B CDR05BX104B CDR05BX124B CDR05BX154B CDR05BX224A CDR05BX274A CDR05BX334A	3900 4700 5600 68,000 82,000 100,000 120,000 150,000 220,000 270,000 330,000	J,K J,K J,K K,M K K,M K,M K,M	BP BP BP BX BX BX BX BX BX BX BX	100 100 100 100 100 100 100 100 50 50
AVX Style 22	225/CDR06			
CDR06BP682B CDR06BP822B CDR06BP103B CDR06BX394A CDR06BX474A	6800 8200 10,000 390,000 470,000	J,K J,K J,K K K,M	BP BP BP BX BX	100 100 100 50 50


Add appropriate failure rate

Add appropriate termination finish


- Capacitance Tolerance

Military Part Number Identification CDR31 thru CDR35

MILITARY DESIGNATION PER MIL-PRF-55681

MIL Style: CDR31, CDR32, CDR33, CDR34, CDR35

Voltage Temperature Limits:

BP = 0 ± 30 ppm/°C without voltage; 0 ± 30 ppm/°C with rated voltage from -55°C to +125°C

 $BX = \pm 15\%$ without voltage; +15-25% with rated voltage from -55°C to +125°C

Capacitance: Two digit figures followed by multiplier (number of zeros to be added) e.g., 101 = 100 pF

Rated Voltage: A = 50V, B = 100V

Capacitance Tolerance: C ±.25 pF, D ±.5 pF, F ±1%

 $J \pm 5\%$, $K \pm 10\%$, $M \pm 20\%$

Termination Finish:

M = Palladium Silver N = Silver Nickel Gold S = Solder-coated

U = Base Metallization/Barrier Metal/Solder Coated* W = Base Metallization/Barrier Metal/Tinned (Tin or Tin/ Lead Alloy)

*Solder shall have a melting point of 200°C or less.

Failure Rate Level: M = 1.0%, P = .1%, R = .01%, S = .001%

Packaging: Bulk is standard packaging. Tape and reel per RS481 is available upon request.

CROSS REFERENCE: AVX/MIL-PRF-55681/CDR31 THRU CDR35

Per MIL-PRF-55681	AVX	Length (L)	Width (W)	Thickness (T)	D	Terminatio	n Band (t)
(Metric Sizes)	Style	(mm)	(mm)	Max. (mm)	Min. (mm)	Max. (mm)	Min. (mm)
CDR31	0805	2.00	1.25	1.3	.50	.70	.30
CDR32	1206	3.20	1.60	1.3	_	.70	.30
CDR33	1210	3.20	2.50	1.5	_	.70	.30
CDR34	1812	4.50	3.20	1.5	_	.70	.30
CDR35	1825	4.50	6.40	1.5	_	.70	.30

Military Part Number Identification CDR31

CDR31 to MIL-PRF-55681/7

Military Type Designation <u>1</u> /	Capacitance in pF	Capacitance tolerance	Rated temperature and voltage-temperature limits	WVDC
AVX Style 0	805/CDR31	(BP)		•
CDR31BP1R0B CDR31BP1R1B CDR31BP1R2B CDR31BP1R3B CDR31BP1R5B	1.0 1.1 1.2 1.3 1.5	C C C C C	BP BP BP BP BP	100 100 100 100 100
CDR31BP1R6B CDR31BP1R8B CDR31BP2R0B CDR31BP2R2B CDR31BP2R4B	1.6 1.8 2.0 2.2 2.4	C C C C	BP BP BP BP BP	100 100 100 100 100
CDR31BP2R7B	2.7	C,D	BP	100
CDR31BP3R0B	3.0	C,D	BP	100
CDR31BP3R3B	3.3	C,D	BP	100
CDR31BP3R6B	3.6	C,D	BP	100
CDR31BP3R9B	3.9	C,D	BP	100
CDR31BP4R3B	4.3	C,D	BP	100
CDR31BP4R7B	4.7	C,D	BP	100
CDR31BP5R1B	5.1	C,D	BP	100
CDR31BP5R6B	5.6	C,D	BP	100
CDR31BP6R2B	6.2	C,D	BP	100
CDR31BP6R8B	6.8	C,D	BP	100
CDR31BP7R5B	7.5	C,D	BP	100
CDR31BP8R2B	8.2	C,D	BP	100
CDR31BP9R1B	9.1	C,D	BP	100
CDR31BP100B	10	J,K	BP	100
CDR31BP110B	11	J,K	BP	100
CDR31BP120B	12	J,K	BP	100
CDR31BP130B	13	J,K	BP	100
CDR31BP150B	15	J,K	BP	100
CDR31BP160B	16	J,K	BP	100
CDR31BP180B	18	J,K	BP	100
CDR31BP200B	20	J,K	BP	100
CDR31BP220B	22	J,K	BP	100
CDR31BP240B	24	J,K	BP	100
CDR31BP270B	27	F,J,K	BP	100
CDR31BP300B	30	F,J,K	BP	100
CDR31BP330B	33	F,J,K	BP	100
CDR31BP360B	36	F,J,K	BP	100
CDR31BP390B	39	F,J,K	BP	100
CDR31BP430B	43	F,J,K	BP	100
CDR31BP470B	47	F,J,K	BP	100
CDR31BP510B	51	F,J,K	BP	100
CDR31BP560B	56	F,J,K	BP	100
CDR31BP620B	62	F,J,K	BP	100
CDR31BP680B	68	F,J,K	BP	100
CDR31BP750B	75	F,J,K	BP	100
CDR31BP820B	82	F,J,K	BP	100
CDR31BP910B	91	F,J,K	BP	100

Add appropriate failure rate
 Add appropriate termination finish
 Capacitance Tolerance

		1		1
Military Type Designation <u>1</u> /	Capacitance in pF	Capacitance tolerance	Rated temperature and voltage- temperature limits	WVDC
AVX Style 0	805/CDR31	(BP) cont	'd	
CDR31BP101B	100	F,J,K	BP	100
CDR31BP111B	110	F,J,K	BP	100
CDR31BP121B	120	F,J,K	BP	100
CDR31BP131B	130	F,J,K	BP	100
CDR31BP151B	150	F,J,K	BP	100
CDR31BP161B	160	F,J,K	BP	100
CDR31BP181B	180	F,J,K	BP	100
CDR31BP201B	200	F,J,K	BP	100
CDR31BP221B	220	F,J,K	BP	100
CDR31BP241B	240	F,J,K	BP	100
CDR31BP271B	270	F,J,K	BP	100
CDR31BP301B	300	F,J,K	BP	100
CDR31BP331B	330	F,J,K	BP	100
CDR31BP361B	360	F,J,K	BP	100
CDR31BP391B	390	F,J,K	BP	100
CDR31BP431B CDR31BP471B CDR31BP511A CDR31BP561A CDR31BP621A CDR31BP681A	430 470 510 560 620 680	F,J,K F,J,K F,J,K F,J,K F,J,K	BP BP BP BP BP	100 100 50 50 50 50
AVX Style 0	805/CDR31	(BX)		
CDR31BX471B	470	K,M	BX	100
CDR31BX561B	560	K,M	BX	100
CDR31BX681B	680	K,M	BX	100
CDR31BX821B	820	K,M	BX	100
CDR31BX102B	1,000	K,M	BX	100
CDR31BX122B	1,200	K,M	BX	100
CDR31BX152B	1,500	K,M	BX	100
CDR31BX182B	1,800	K,M	BX	100
CDR31BX222B	2,200	K,M	BX	100
CDR31BX272B	2,700	K,M	BX	100
CDR31BX332B	3,300	K,M	BX	100
CDR31BX392B	3,900	K,M	BX	100
CDR31BX472B	4,700	K,M	BX	100
CDR31BX562A	5,600	K,M	BX	50
CDR31BX682A	6,800	K,M	BX	50
CDR31BX822A	8,200	K,M	BX	50
CDR31BX103A	10,000	K,M	BX	50
CDR31BX123A	12,000	K,M	BX	50
CDR31BX153A	15,000	K,M	BX	50
CDR31BX183A	18,000	K,M	BX	50

Add appropriate failure rateAdd appropriate termination finish

- Capacitance Tolerance

 $^{{\}underline {\bf 1}}/\,{\hbox{The complete part number will include additional symbols to indicate capacitance tolerance, termination and failure rate level.}$

Military Part Number Identification CDR32

CDR32 to MIL-PRF-55681/8

Military Type Designation <u>1</u> /	Capacitance in pF	Capacitance tolerance	Rated temperature and voltage-temperature limits	WVDC
AVX Style 1	206/CDR32	(BP)		
CDR32BP1R0B CDR32BP1R1B CDR32BP1R2B CDR32BP1R3B CDR32BP1R5B	1.0 1.1 1.2 1.3 1.5	00000	BP BP BP BP	100 100 100 100 100
CDR32BP1R6B CDR32BP1R8B CDR32BP2R0B CDR32BP2R2B CDR32BP2R4B	1.6 1.8 2.0 2.2 2.4	C C C C	BP BP BP BP BP	100 100 100 100 100
CDR32BP2R7B	2.7	C,D	BP	100
CDR32BP3R0B	3.0	C,D	BP	100
CDR32BP3R3B	3.3	C,D	BP	100
CDR32BP3R6B	3.6	C,D	BP	100
CDR32BP3R9B	3.9	C,D	BP	100
CDR32BP4R3B	4.3	C,D	BP	100
CDR32BP4R7B	4.7	C,D	BP	100
CDR32BP5R1B	5.1	C,D	BP	100
CDR32BP5R6B	5.6	C,D	BP	100
CDR32BP6R2B	6.2	C,D	BP	100
CDR32BP6R8B	6.8	C,D	BP	100
CDR32BP7R5B	7.5	C,D	BP	100
CDR32BP8R2B	8.2	C,D	BP	100
CDR32BP9R1B	9.1	C,D	BP	100
CDR32BP100B	10	J,K	BP	100
CDR32BP110B	11	J,K	BP	100
CDR32BP120B	12	J,K	BP	100
CDR32BP130B	13	J,K	BP	100
CDR32BP150B	15	J,K	BP	100
CDR32BP160B	16	J,K	BP	100
CDR32BP180B	18	J,K	BP	100
CDR32BP200B	20	J,K	BP	100
CDR32BP220B	22	J,K	BP	100
CDR32BP240B	24	J,K	BP	100
CDR32BP270B	27	F,J,K	BP	100
CDR32BP300B	30	F,J,K	BP	100
CDR32BP330B	33	F,J,K	BP	100
CDR32BP360B	36	F,J,K	BP	100
CDR32BP390B	39	F,J,K	BP	100
CDR32BP430B	43	F,J,K	BP	100
CDR32BP470B	47	F,J,K	BP	100
CDR32BP510B	51	F,J,K	BP	100
CDR32BP560B	56	F,J,K	BP	100
CDR32BP620B	62	F,J,K	BP	100
CDR32BP680B	68	F,J,K	BP	100
CDR32BP750B	75	F,J,K	BP	100
CDR32BP820B	82	F,J,K	BP	100
CDR32BP910B	91	F,J,K	BP	100

Add appropriate failure rate

 Add appropriate termination finish

 Capacitance Tolerance

Military Type Designation <u>1</u> /	Capacitance in pF	Capacitance tolerance	Rated temperature and voltage-temperature limits	WVDC
AVX Style 1	206/CDR32	(BP) cont	'd	
CDR32BP101B CDR32BP111B CDR32BP131B CDR32BP151B CDR32BP151B CDR32BP161B CDR32BP201B CDR32BP221B CDR32BP241B CDR32BP271B CDR32BP301B CDR32BP301B CDR32BP301B CDR32BP31B CDR32BP31B CDR32BP31B CDR32BP31B CDR32BP51B CDR32BP51B CDR32BP51B CDR32BP51B CDR32BP51B CDR32BP51B CDR32BP51B CDR32BP561B CDR32BP61B CDR32BP61B CDR32BP61B	100 110 120 130 150 160 180 200 220 240 270 300 330 360 390 430 470 510 560 620 680	F,J,K F,J,K F,J,K F,J,K F,J,K F,J,K F,J,K F,J,K F,J,K F,J,K F,J,K F,J,K F,J,K F,J,K F,J,K F,J,K	BP BP BP BP BP BP BP BP BP BP BP BP BP B	100 100 100 100 100 100 100 100 100 100
CDR32BP751B CDR32BP821B CDR32BP911B CDR32BP112A CDR32BP122A CDR32BP132A CDR32BP152A CDR32BP152A CDR32BP162A CDR32BP182A CDR32BP182A CDR32BP182A	750 820 910 1,000 1,100 1,200 1,300 1,500 1,600 1,800	F,J,K F,J,K F,J,K F,J,K F,J,K F,J,K F,J,K F,J,K F,J,K	BP BP BP BP BP BP BP BP BP	100 100 100 100 100 50 50 50 50 50
CDR32BP202A CDR32BP222A	2,000 2,200	F,J,K F,J,K	BP BP	50
AVX Style 1	206/CDR32	(BX)		
CDR32BX472B CDR32BX662B CDR32BX822B CDR32BX103B CDR32BX153B CDR32BX153B CDR32BX183A CDR32BX223A CDR32BX23333A CDR32BX3333A CDR32BX3333A	4,700 5,600 6,800 8,200 10,000 12,000 15,000 18,000 22,000 27,000 33,000 39,000	K,M K,M K,M K,M K,M K,M K,M K,M K,M	BX BX BX BX BX BX BX BX BX BX BX	100 100 100 100 100 100 100 50 50 50 50

Add appropriate failure rate

Add appropriate termination finish

- Capacitance Tolerance

 $[\]underline{\mathbf{1}}/$ The complete part number will include additional symbols to indicate capacitance tolerance, termination and failure rate level.

Military Part Number Identification CDR33/34/35

CDR33/34/35 to MIL-PRF-55681/9/10/11

Military Type Designation <u>1</u> /	Capacitance in pF	Capacitance tolerance	Rated temperature and voltage- temperature limits	WVDC
AVX Style 1	210/CDR33	(BP)		
CDR33BP102B CDR33BP112B CDR33BP132B CDR33BP152B CDR33BP162B CDR33BP162B CDR33BP202B CDR33BP222B CDR33BP222B CDR33BP222A	1,000 1,100 1,200 1,300 1,500 1,600 1,800 2,000 2,200 2,400	F,J,K F,J,K F,J,K F,J,K F,J,K F,J,K F,J,K F,J,K F,J,K	BP BP BP BP BP BP BP BP BP	100 100 100 100 100 100 100 100 100 50
CDR33BP272A CDR33BP302A CDR33BP332A	2,700 3,000 3,300	F,J,K F,J,K F,J,K	BP BP BP	50 50 50
AVX Style 12	210/CDR33	(BX)		
CDR33BX153B CDR33BX183B CDR33BX223B CDR33BX273B CDR33BX473A CDR33BX5683A CDR33BX683A CDR33BX823A CDR33BX104A	15,000 18,000 22,000 27,000 39,000 47,000 56,000 68,000 82,000 100,000	K,M K,M K,M K,M K,M K,M K,M K,M	BX BX BX BX BX BX BX BX BX BX BX	100 100 100 100 50 50 50 50 50 50
AVX Style 18	812/CDR34	(BP)		
CDR34BP222B CDR34BP242B CDR34BP272B CDR34BP302B CDR34BP332B CDR34BP392B CDR34BP432B CDR34BP452B CDR34BP472B CDR34BP472B CDR34BP512A	2,200 2,400 2,700 3,000 3,300 3,600 4,300 4,700 5,100	F,J,K F,J,K F,J,K F,J,K F,J,K F,J,K F,J,K F,J,K F,J,K	BP BP BP BP BP BP BP BP BP	100 100 100 100 100 100 100 100 100 50
CDR34BP562A CDR34BP622A CDR34BP682A CDR34BP752A CDR34BP822A CDR34BP912A CDR34BP103A	5,600 6,200 6,800 7,500 8,200 9,100 10,000	F,J,K F,J,K F,J,K F,J,K F,J,K F,J,K F,J,K	BP BP BP BP BP BP	50 50 50 50 50 50
25.015.130/1	Add appropriateAdd appropriateCapacitance Tole	failure rate termination finis	l	

2/CDR34 27,000 33,000 39,000 47,000 56,000 100,000 120,000 150,000 180,000	(BX) K,M K,M K,M K,M K,M K,M K,M K,M	BX BX BX BX BX BX	100 100 100 100 100
33,000 39,000 47,000 56,000 100,000 120,000 150,000	K,M K,M K,M K,M K,M	BX BX BX BX BX	100 100 100
	K,M	BX BX BX	50 50 50 50
5/CDR35	(BP)		
4,700 5,100 5,600 6,200 6,800 7,500 8,200 9,100 10,000 11,000 12,000 13,000 16,000 18,000 20,000 22,000	F,J,K F,J,K F,J,K F,J,K F,J,K F,J,K F,J,K F,J,K F,J,K F,J,K F,J,K F,J,K F,J,K F,J,K F,J,K	BP BP BP BP BP BP BP BP BP BP BP BP BP B	100 100 100 100 100 100 100 100 50 50 50 50 50 50
5/CDR35	(BX)		
56,000 68,000 82,000 100,000 120,000 150,000 180,000 220,000 270,000 330,000 470,000	K,M K,M K,M K,M K,M K,M K,M K,M K,M	BX BX BX BX BX BX BX BX BX BX BX BX	100 100 100 100 100 100 50 50 50 50 50
	4,700 5,100 5,600 6,200 6,800 7,500 8,200 9,100 10,000 11,000 12,000 15,000 16,000 20,000 22,000 22,000 100,000 120,000 120,000 120,000 120,000 120,000 120,000 120,000 130,000 130,000 130,000 130,000 130,000 130,000 130,000 130,000 130,000 130,000 130,000 130,000 130,000 130,000 130,000 130,000 130,000	5,100 F,J,K 5,600 F,J,K 6,200 F,J,K 6,800 F,J,K 7,500 F,J,K 8,200 F,J,K 10,000 F,J,K 11,000 F,J,K 12,000 F,J,K 13,000 F,J,K 15,000 F,J,K 15,000 F,J,K 20,000 F,J,K 22,000 F,J,K 35,000 F,J,	4,700 F,J,K BP 5,100 F,J,K BP 5,600 F,J,K BP 6,200 F,J,K BP 6,800 F,J,K BP 6,800 F,J,K BP 7,500 F,J,K BP 8,200 F,J,K BP 1,000 F,J,K BP 11,000 F,J,K BP 11,000 F,J,K BP 11,000 F,J,K BP 11,000 F,J,K BP 12,000 F,J,K BP 15,000 F,J,K BP 15,000 F,J,K BP 16,000 F,J,K BP 18,000 F,J,K BP 20,000 F,J,K BP 22,000 F,J,K BP 21,000 F,J,K BP 22,000 F,J,K BP 21,000 F,J,K BP 22,000 F,J,K BP 22,000 F,J,K BP 21,000 F,J,K BP 22,000 F,J,K BP 22,000 F,J,K BP 21,000 F,J,K BP 22,000 F,J,K BP 22,000 F,J,K BP 21,000 F,J,K BP 22,000 F,J,K BP 22,000 F,J,K BP 23,000 F,J,K BP 24,000 F,J,K BP 25/CDR35 (BX)

 $[\]underline{\bf 1}/$ The complete part number will include additional symbols to indicate capacitance tolerance, termination and failure rate level.

Add appropriate termination finish

Capacitance Tolerance

European Detail Specifications CECC 32 101-801/Chips

Standard European Ceramic Chip Capacitors

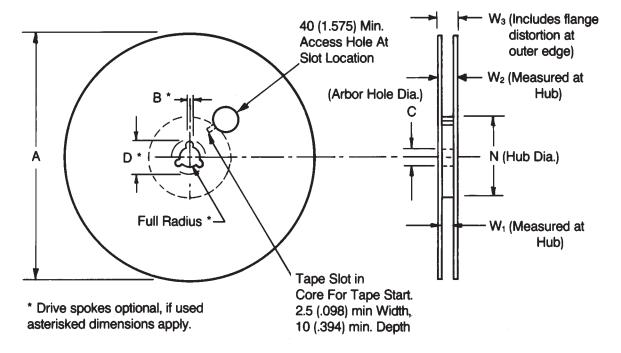
PART NUMBER (example)

RANGE OF APPROVED COMPONENTS

Case	Dielectric	V	oltage and Capacitance Ra	nge
Size	Туре	50V	100V	200V
1BCG				
0603 0805 1206 1210 1808 1812 2220	1B CG 1B CG 1B CG 1B CG 1B CG 1B CG 1B CG	0.47pF - 150pF 0.47pF - 560pF 0.47pF - 3.3nF 0.47pF - 4.7nF 0.47pF - 6.8nF 0.47pF - 15nF 0.47pF - 39nF	0.47pF - 120pF 0.47pF - 560pF 0.47pF - 3.3nF 0.47pF - 4.7nF 0.47pF - 6.8nF 0.47pF - 15nF 0.47pF - 39nF	0.47pF - 100pF 0.47pF - 330pF 0.47pF - 1.5nF 0.47pF - 2.7nF 0.47pF - 4.7nF 0.47pF - 10nF 0.47pF - 15nF
2R1				
0603 0805 1206 1210 1808 1812 2220	2R1 2R1 2R1 2R1 2R1 2R1 2R1	10pF - 6.8nF 10pF - 33nF 10pF - 100nF 10pF - 150nF 10pF - 270nF 10pF - 470nF 10pF - 1.2µF	10pF - 6.8nF 10pF - 18nF 10pF - 68nF 10pF - 100nF 10pF - 180nF 10pF - 330nF 10pF - 680nF	10pF - 1.2nF 10pF - 3.3nF 10pF - 18nF 10pF - 27nF 10pF - 47nF 10pF - 100nF 10pF - 220nF
2F4				
0805 1206 1210 1808 1812 2220	2F4 2F4 2F4 2F4 2F4 2F4	10pF - 100nF 10pF - 330nF 10pF - 470nF 10pF - 560nF 10pF - 1.8µF 10pF - 2.2µF		

Packaging of Chip Components

Automatic Insertion Packaging


TAPE & REEL QUANTITIES

All tape and reel specifications are in compliance with RS481.

	8mm	12mm		
Paper or Embossed Carrier	0805, 1005, 1206, 1210			
Embossed Only	0504, 0907	1505, 1805, 1808	1812, 1825 2220, 2225	
Paper Only	0402, 0603			
Qty. per Reel/7" Reel	2,000 or 4,000 ⁽¹⁾	3,000	1,000	
Qty. per Reel/13" Reel	10,000	10,000	4,000	

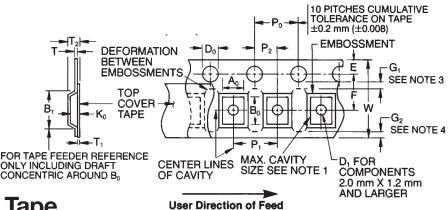
⁽¹⁾ Dependent on chip thickness. Low profile chips shown on page 27 are 5,000 per reel for 7" reel. 0402 size chips are 10,000 per 7" reels and are not available on 13" reels. For 3640 size chip contact factory for quantity per reel.

REEL DIMENSIONS

Tape Size ⁽¹⁾	A Max.	B* Min.	С	D* Min.	N Min.	W ₁	W ₂ Max.	W ₃
8mm	330	1.5	13.0±0.20	20.2	50	8.4 ^{+1.0} (.331 ^{+0.60})	14.4 (.567)	7.9 Min. (.311) 10.9 Max. (.429)
12mm	(12.992)	(.059)	(.512±.008)	(.795)	(1.969)	12.4 ^{±2} .8 (.488 [±] .0.06)	18.4 (.724)	11.9 Min. (.469) 15.4 Max. (.607)

Metric dimensions will govern.

English measurements rounded and for reference only.

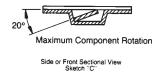

⁽¹⁾ For tape sizes 16mm and 24mm (used with chip size 3640) consult EIA RS-481 latest revision.

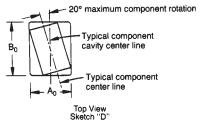
Embossed Carrier Configuration

8 & 12mm Tape Only

8 & 12mm Embossed Tape Metric Dimensions Will Govern

CONSTANT DIMENSIONS

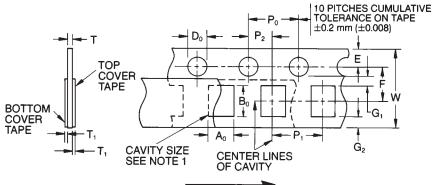

Tape Size	D ₀	Е	P ₀	P ₂	T Max.	T ₁	G₁	G ₂
8mm and 12mm	8.4 ^{+0.10} _{-0.0} (.059 ^{+.004} _{-0.0})	1.75 ± 0.10 (.069 ± .004)	4.0 ± 0.10 (.157 ± .004)	2.0 ± 0.05 (.079 ± .002)	0.600 (.024)	0.10 (.004) Max.	0.75 (.030) Min. See Note 3	0.75 (.030) Min. See Note 4


VARIABLE DIMENSIONS

Tape Size	B ₁ Max. See Note 6	D ₁ Min. See Note 5	F	P ₁	R Min. See Note 2	T ₂	W	$A_0 B_0 K_0$
8mm	4.55 (.179)	1.0 (.039)	3.5 ± 0.05 (.138 ± .002)	4.0 ± 0.10 (.157 ± .004)	25 (.984)	2.5 Max (.098)	8.0 ^{+0.3} (.315 ^{+.012})	See Note 1
12mm	8.2 (.323)	1.5 (.059)	5.5 ± 0.05 (.217 ± .002)	4.0 ± 0.10 (.157 ± .004)	30 (1.181)	6.5 Max. (.256)	12.0 ± .30 (.472 ± .012)	See Note 1
8mm 1/2 Pitch	4.55 (.179)	1.0 (.039)	3.5 ± 0.05 (.138 ± .002)	2.0 ± 0.10 0.79 ± .004	25 (.984)	2.5 Max. (.098)	8.0 ^{+0.3} _{-0.1} (.315 ^{+.012} ₀₀₄)	See Note 1
12mm Double Pitch	8.2 (.323)	1.5 (.059)	5.5 ± 0.05 (.217 ± .002)	8.0 ± 0.10 (.315 ± .004)	30 (1.181)	6.5 Max. (.256)	12.0 ± .30 (.472 ± .012)	See Note 1

NOTES:

- 1. A_0 , B_0 , and K_0 are determined by the max. dimensions to the ends of the terminals extending from the component body and/or the body dimensions of the component. The clearance between the end of the terminals or body of the component to the sides and depth of the cavity (A_0 , B_0 , and K_0) must be within 0.05 mm (.002) min. and 0.50 mm (.020) max. The clearance allowed must also prevent rotation of the component within the cavity of not more than 20 degrees (see sketches C & D).
- 2. Tape with components shall pass around radius "R" without damage. The minimum trailer length (Note 2 Fig. 3) may require additional length to provide R min. for 12 mm embossed tape for reels with hub diameters approaching N min. (Table 4).
- 3. G₁ dimension is the flat area from the edge of the sprocket hole to either the outward deformation of the carrier tape between the embossed cavities or to the edge of the cavity whichever is less.
- 4. G_2 dimension is the flat area from the edge of the carrier tape opposite the sprocket holes to either the outward deformation of the carrier tape between the embossed cavity or to the edge of the cavity whichever is less.
- 5. The embossment hole location shall be measured from the sprocket hole controlling the location of the embossment. Dimensions of embossment location and hole location shall be applied independent of each other.
- 6. B₁ dimension is a reference dimension for tape feeder clearance only.

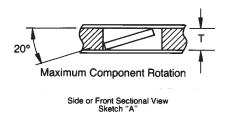


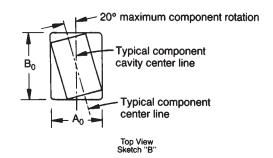
Paper Carrier Configuration

8 & 12mm Paper Tape Metric Dimensions Will Govern

User Direction of Feed

CONSTANT DIMENSIONS


Tape Siz	D ₀	E	P ₀	P ₂	T ₁	G ₁	G ₂	R MIN.
8mm and 12mm	1.5 -0.0 (.059 +.004)	1.75 ± 0.10 (.069 ± .004)	4.0 ± 0.10 (.157 ± .004)	2.0 ± 0.05 (.079 ± .002)	0.10 (.004) Max.	0.75 (.030) Min.	0.75 (.030) Min.	25 (.984) See Note 2


VARIABLE DIMENSIONS

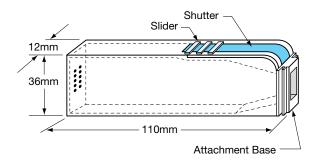
Tape Size	P ₁	F	w	$A_0 B_0$	Т
8mm	4.0 ± 0.10 (.157 ± .004)	3.5 ± 0.05 (.138 ± .002)	8.0 ^{+0.3} _{-0.1} (.315 ^{+.012} ₀₀₄)	See Note 1	See Note 3
12mm	4.0 ± .010 (.157 ± .004)	5.5 ± 0.05 (.217 ± .002)	12.0 ± 0.3 (.472 ± .012)		
8mm 1/2 Pitch	2.0 ± 0.10 (.079 ± .004)	3.5 ± 0.05 (.138 ± .002)	8.0 ^{+0.3} (.315 ^{+.012})		
12mm Double Pitch	8.0 ± 0.10 (.315 ± .004)	5.5 ± 0.05 (.217 ± .002)	12.0 ± 0.3 (.472 ± .012)		

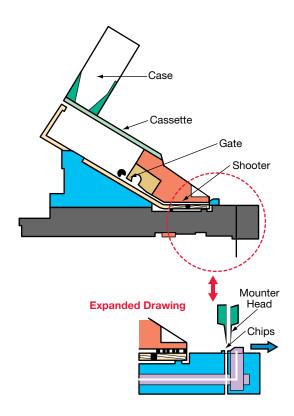
NOTES:

- 1. A_0 , B_0 , and T are determined by the max. dimensions to the ends of the terminals extending from the component body and/or the body dimensions of the component. The clearance between the ends of the terminals or body of the component to the sides and depth of the cavity (A_0 , B_0 , and T) must be within 0.05 mm (.002) min. and 0.50 mm (.020) max. The clearance allowed must also prevent rotation of the component within the cavity of not more than 20 degrees (see sketches A & B).
- 2. Tape with components shall pass around radius "R" without damage.
- 3. 1.1 mm (.043) Base Tape and 1.6 mm (.063) Max. for Non-Paper Base Compositions.

Bar Code Labeling Standard

AVX bar code labeling is available and follows latest version of EIA-556-A.

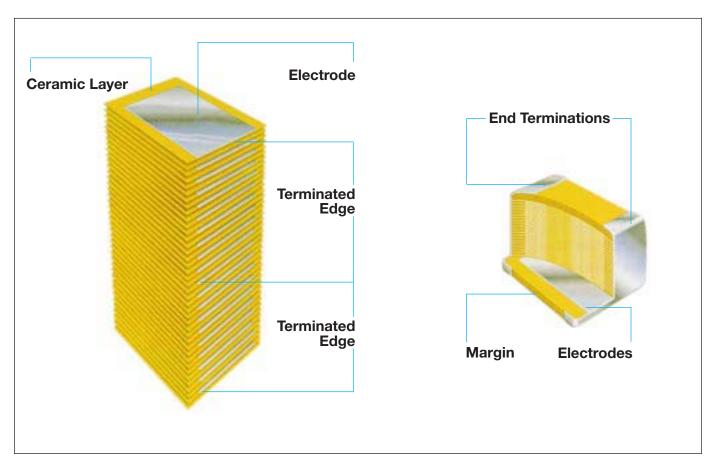

Bulk Case Packaging


BENEFITS

- Easier handling
- Smaller packaging volume (1/20 of T/R packaging)
- Easier inventory control
- Flexibility
- Recyclable

CASE DIMENSIONS

BULK FEEDER


CASE QUANTITIES

Part Size	0402	0603	0805
Qty. (pcs / cassette)	80,000	15,000	10,000 (T=0.6mm) 5,000 (T≥0.6mm)

Basic Construction - A multilayer ceramic (MLC) capacitor is a monolithic block of ceramic containing two sets of offset, interleaved planar electrodes that extend to two opposite surfaces of the ceramic dielectric. This simple

structure requires a considerable amount of sophistication, both in material and manufacture, to produce it in the quality and quantities needed in today's electronic equipment.

Formulations - Multilayer ceramic capacitors are available in both Class 1 and Class 2 formulations. Temperature compensating formulation are Class 1 and temperature stable and general application formulations are classified as Class 2.

Class 1 – Class 1 capacitors or temperature compensating capacitors are usually made from mixtures of titanates where barium titanate is normally not a major part of the mix. They have predictable temperature coefficients and in general, do not have an aging characteristic. Thus they are the most stable capacitor available. The most popular Class 1 multilayer ceramic capacitors are COG (NPO) temperature compensating capacitors (negative-positive 0 ppm/°C).

Class 2 – EIA Class 2 capacitors typically are based on the chemistry of barium titanate and provide a wide range of capacitance values and temperature stability. The most commonly used Class 2 dielectrics are X7R and Y5V. The X7R provides intermediate capacitance values which vary only ±15% over the temperature range of -55°C to 125°C. It finds applications where stability over a wide temperature range is required.

The Y5V provides the highest capacitance values and is used in applications where limited temperature changes are expected. The capacitance value for Y5V can vary from 22% to -82% over the -30°C to 85°C temperature range. The Z5U dielectric is between X7R and Y5V in both stability and capacitance range.

All Class 2 capacitors vary in capacitance value under the influence of temperature, operating voltage (both AC and DC), and frequency. For additional information on performance changes with operating conditions, consult AVX's software, SpiCap.

Effects of Voltage - Variations in voltage have little effect on Class 1 dielectric but does affect the capacitance and dissipation factor of Class 2 dielectrics. The application of DC voltage reduces both the capacitance and dissipation factor while the application of an AC voltage within a reasonable range tends to increase both capacitance and dissipation factor readings. If a high enough AC voltage is applied, eventually it will reduce capacitance just as a DC voltage will. Figure 2 shows the effects of AC voltage.

Cap. Change vs. A.C. Volts AVX X7R T.C.

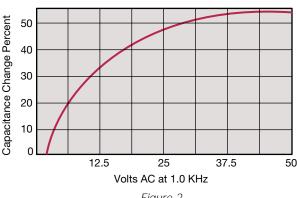
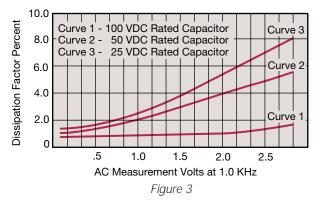
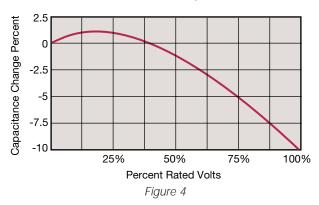



Figure 2


Capacitor specifications specify the AC voltage at which to measure (normally 0.5 or 1 VAC) and application of the wrong voltage can cause spurious readings. Figure 3 gives the voltage coefficient of dissipation factor for various AC voltages at 1 kilohertz. Applications of different frequencies will affect the percentage changes versus voltages.

D.F. vs. A.C. Measurement Volts AVX X7R T.C.

The effect of the application of DC voltage is shown in Figure 4. The voltage coefficient is more pronounced for higher K dielectrics. These figures are shown for room temperature conditions. The combination characteristic known as voltage temperature limits which shows the effects of rated voltage over the operating temperature range is shown in Figure 5 for the military BX characteristic.

Cap. Change vs. D.C. Volts AVX X7R T.C.

Typical Cap. Change vs. Temperature AVX X7R T.C.

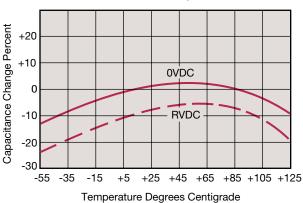
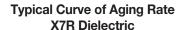
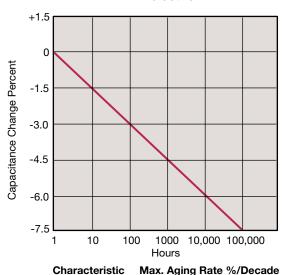


Figure 5


Effects of Time - Class 2 ceramic capacitors change capacitance and dissipation factor with time as well as temperature, voltage and frequency. This change with time is known as aging. Aging is caused by a gradual re-alignment of the crystalline structure of the ceramic and produces an exponential loss in capacitance and decrease in dissipation factor versus time. A typical curve of aging rate for semistable ceramics is shown in Figure 6.


If a Class 2 ceramic capacitor that has been sitting on the shelf for a period of time, is heated above its curie point, (125°C for 4 hours or 150°C for ½ hour will suffice) the part will de-age and return to its initial capacitance and dissipation factor readings. Because the capacitance changes rapidly, immediately after de-aging, the basic capacitance measurements are normally referred to a time period sometime after the de-aging process. Various manufacturers use different time bases but the most popular one is one day or twenty-four hours after "last heat." Change in the aging curve can be caused by the application of voltage and other stresses. The possible changes in capacitance due to de-aging by heating the unit explain why capacitance changes are allowed after test, such as temperature cycling, moisture resistance, etc., in MIL specs. The application of high voltages such as dielectric withstanding voltages also

tends to de-age capacitors and is why re-reading of capacitance after 12 or 24 hours is allowed in military specifications after dielectric strength tests have been performed.

Characteristic	Max. Aging Rate %/Deca
C0G (NP0)	None
X7R ` ´	2
Z5U	3
Y5V	5
	Figure 6

Effects of Frequency – Frequency affects capacitance and impedance characteristics of capacitors. This effect is much more pronounced in high dielectric constant ceramic formulation that is low K formulations. AVX's SpiCap software generates impedance, ESR, series inductance, series resonant frequency and capacitance all as functions of frequency, temperature and DC bias for standard chip sizes and styles. It is available free from AVX.

Effects of Mechanical Stress – High "K" dielectric ceramic capacitors exhibit some low level piezoelectric reactions under mechanical stress. As a general statement, the piezoelectric output is higher, the higher the dielectric constant of the ceramic. It is desirable to investigate this effect before using high "K" dielectrics as coupling capacitors in extremely low level applications.

Reliability – Historically ceramic capacitors have been one of the most reliable types of capacitors in use today. The approximate formula for the reliability of a ceramic capacitor is:

$$\frac{L_o}{L_t} = \left(\frac{V_t}{V_o}\right)^X \left(\frac{T_t}{T_o}\right)^Y$$

where

 $\begin{array}{lll} \textbf{L}_{\textbf{o}} = \text{operating life} & \textbf{T}_{\textbf{t}} = \text{test temperature and} \\ \textbf{L}_{\textbf{t}} = \text{test life} & \textbf{T}_{\textbf{o}} = \text{operating temperature} \\ \textbf{V}_{\textbf{t}} = \text{test voltage} & \text{in °C} \\ \textbf{V}_{\textbf{o}} = \text{operating voltage} & \textbf{X,Y} = \text{see text} \end{array}$

Historically for ceramic capacitors exponent X has been considered as 3. The exponent Y for temperature effects typically tends to run about 8.

A capacitor is a component which is capable of storing electrical energy. It consists of two conductive plates (electrodes) separated by insulating material which is called the dielectric. A typical formula for determining capacitance is:

$$C = \frac{.224 \text{ KA}}{t}$$

C = capacitance (picofarads)

K = dielectric constant (Vacuum = 1)

A = area in square inches

t = separation between the plates in inches (thickness of dielectric)

.224 = conversion constant

(.0884 for metric system in cm)

Capacitance - The standard unit of capacitance is the farad. A capacitor has a capacitance of 1 farad when 1 coulomb charges it to 1 volt. One farad is a very large unit and most capacitors have values in the micro (10-6), nano (10-9) or pico (10-12) farad level.

Dielectric Constant – In the formula for capacitance given above the dielectric constant of a vacuum is arbitrarily chosen as the number 1. Dielectric constants of other materials are then compared to the dielectric constant of a vacuum.

Dielectric Thickness - Capacitance is indirectly proportional to the separation between electrodes. Lower voltage requirements mean thinner dielectrics and greater capacitance per volume.

Area – Capacitance is directly proportional to the area of the electrodes. Since the other variables in the equation are usually set by the performance desired, area is the easiest parameter to modify to obtain a specific capacitance within a material group.

Energy Stored - The energy which can be stored in a capacitor is given by the formula:

$$E = \frac{1}{2}CV^2$$

E = energy in joules (watts-sec)

V = applied voltage

C = capacitance in farads

Potential Change - A capacitor is a reactive component which reacts against a change in potential across it. This is shown by the equation for the linear charge of a capacitor:

$$I_{\text{ideal}} = C \frac{dV}{dt}$$

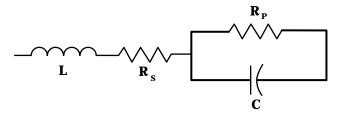
where

I = Current

C = Capacitance

dV/dt = Slope of voltage transition across capacitor

Thus an infinite current would be required to instantly change the potential across a capacitor. The amount of current a capacitor can "sink" is determined by the above


Equivalent Circuit - A capacitor, as a practical device, exhibits not only capacitance but also resistance and inductance. A simplified schematic for the equivalent circuit is:

C = Capacitance

L = Inductance

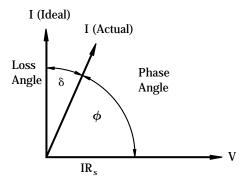
R_s = Series Resistance

 $\mathbf{R}_{\mathbf{p}}$ = Parallel Resistance

Reactance – Since the insulation resistance (R_n) is normally very high, the total impedance of a capacitor is:

$$Z = \sqrt{R_S^2 + (X_C - X_L)^2}$$

where

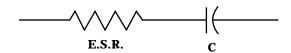

Z = Total Impedance

 $\mathbf{R_s} = \text{Series Resistance}$ $\mathbf{X_c} = \text{Capacitive Reactance} =$

 $= 2 \pi fL$ X_i = Inductive Reactance

The variation of a capacitor's impedance with frequency determines its effectiveness in many applications.

Phase Angle - Power Factor and Dissipation Factor are often confused since they are both measures of the loss in a capacitor under AC application and are often almost identical in value. In a "perfect" capacitor the current in the capacitor will lead the voltage by 90°.



In practice the current leads the voltage by some other phase angle due to the series resistance R_s. The complement of this angle is called the loss angle and:

Power Factor (P.F.) = Cos
$$\phi$$
 or Sine δ Dissipation Factor (D.F.) = $\tan \delta$

for small values of δ the tan and sine are essentially equal which has led to the common interchangeability of the two terms in the industry.

Equivalent Series Resistance - The term E.S.R. or Equivalent Series Resistance combines all losses both series and parallel in a capacitor at a given frequency so that the equivalent circuit is reduced to a simple R-C series connection.

Dissipation Factor - The DF/PF of a capacitor tells what percent of the apparent power input will turn to heat in the capacitor.

Dissipation Factor =
$$\frac{\text{E.S.R.}}{\text{X}_{c}}$$
 = (2 π fC) (E.S.R.)

The watts loss are:

Watts loss =
$$(2 \pi fCV^2)$$
 (D.F.)

Very low values of dissipation factor are expressed as their reciprocal for convenience. These are called the "Q" or Quality factor of capacitors.

Parasitic Inductance - The parasitic inductance of capacitors is becoming more and more important in the decoupling of today's high speed digital systems. The relationship between the inductance and the ripple voltage induced on the DC voltage line can be seen from the simple inductance equation:

$$V = L \frac{di}{dt}$$

The $\frac{dl}{dt}$ seen in current microprocessors can be as high as 0.3 A/ns, and up to 10A/ns. At 0.3 A/ns, 100pH of parasitic inductance can cause a voltage spike of 30mV. While this does not sound very drastic, with the Vcc for microprocessors decreasing at the current rate, this can be a fairly large percentage.

Another important, often overlooked, reason for knowing the parasitic inductance is the calculation of the resonant frequency. This can be important for high frequency, bypass capacitors, as the resonant point will give the most signal attenuation. The resonant frequency is calculated from the simple equation:

$$f_{res} = \frac{1}{2\pi\sqrt{LC}}$$

Insulation Resistance - Insulation Resistance is the resistance measured across the terminals of a capacitor and consists principally of the parallel resistance Rp shown in the equivalent circuit. As capacitance values and hence the area of dielectric increases, the I.R. decreases and hence the product (C x IR or RC) is often specified in ohm farads or more commonly megohm-microfarads. Leakage current

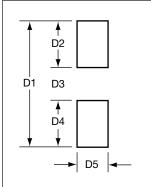
is determined by dividing the rated voltage by IR (Ohm's Law).

Dielectric Strength - Dielectric Strength is an expression of the ability of a material to withstand an electrical stress. Although dielectric strength is ordinarily expressed in volts, it is actually dependent on the thickness of the dielectric and thus is also more generically a function of volts/mil.

Dielectric Absorption - A capacitor does not discharge instantaneously upon application of a short circuit, but drains gradually after the capacitance proper has been discharged. It is common practice to measure the dielectric absorption by determining the "reappearing voltage" which appears across a capacitor at some point in time after it has been fully discharged under short circuit conditions.

Corona - Corona is the ionization of air or other vapors which causes them to conduct current. It is especially prevalent in high voltage units but can occur with low voltages as well where high voltage gradients occur. The energy discharged degrades the performance of the capacitor and can in time cause catastrophic failures.

Surface Mounting Guide



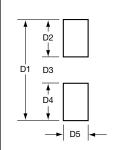
Component Pad Design

Component pads should be designed to achieve good solder filets and minimize component movement during reflow soldering. Pad designs are given below for the most common sizes of multilayer ceramic capacitors for both wave and reflow soldering. The basis of these designs is:

- Pad width equal to component width. It is permissible to decrease this to as low as 85% of component width but it is not advisable to go below this.
- Pad overlap 0.5mm beneath component.
- Pad extension 0.5mm beyond components for reflow and 1.0mm for wave soldering.

REFLOW SOLDERING

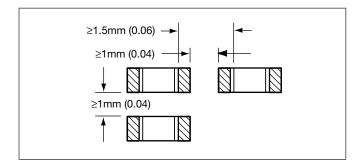
Case Size	D1	D2	D3	D4	D5
0402	1.70 (0.07)	0.60 (0.02)	0.50 (0.02)	0.60 (0.02)	0.50 (0.02)
0603	2.30 (0.09)	0.80 (0.03)	0.70 (0.03)	0.80 (0.03)	0.75 (0.03)
0805	3.00 (0.12)	1.00 (0.04)	1.00 (0.04)	1.00 (0.04)	1.25 (0.05)
1206	4.00 (0.16)	1.00 (0.04)	2.00 (0.09)	1.00 (0.04)	1.60 (0.06)
1210	4.00 (0.16)	1.00 (0.04)	2.00 (0.09)	1.00 (0.04)	2.50 (0.10)
1808	5.60 (0.22)	1.00 (0.04)	3.60 (0.14)	1.00 (0.04)	2.00 (0.08)
1812	5.60 (0.22)	1.00 (0.04))	3.60 (0.14)	1.00 (0.04)	3.00 (0.12)
1825	5.60 (0.22)	1.00 (0.04)	3.60 (0.14)	1.00 (0.04)	6.35 (0.25)
2220	6.60 (0.26)	1.00 (0.04)	4.60 (0.18)	1.00 (0.04)	5.00 (0.20)
2225	6.60 (0.26)	1.00 (0.04)	4.60 (0.18)	1.00 (0.04)	6.35 (0.25)


Dimensions in millimeters (inches)

Surface Mounting Guide

MLC Chip Capacitors

WAVE SOLDERING



Case Size	D1	D2	D3	D4	D5
0603	3.10 (0.12)	1.20 (0.05)	0.70 (0.03)	1.20 (0.05)	0.75 (0.03)
0805	4.00 (0.15)	1.50 (0.06)	1.00 (0.04)	1.50 (0.06)	1.25 (0.05)
1206	5.00 (0.19)	1.50 (0.06)	2.00 (0.09)	1.50 (0.06)	1.60 (0.06)
1210	5.00 (0.19)	1.50 (0.06)	2.00 (0.09)	1.50 (0.06)	2.50 (0.10)

Dimensions in millimeters (inches)

Component Spacing

For wave soldering components, must be spaced sufficiently far apart to avoid bridging or shadowing (inability of solder to penetrate properly into small spaces). This is less important for reflow soldering but sufficient space must be allowed to enable rework should it be required.

Preheat & Soldering

The rate of preheat should not exceed 4°C/second to prevent thermal shock. A better maximum figure is about 2°C/second.

For capacitors size 1206 and below, with a maximum thickness of 1.25mm, it is generally permissible to allow a temperature differential from preheat to soldering of 150°C. In all other cases this differential should not exceed 100°C.

For further specific application or process advice, please consult AVX.

Cleaning

Care should be taken to ensure that the capacitors are thoroughly cleaned of flux residues especially the space beneath the capacitor. Such residues may otherwise become conductive and effectively offer a low resistance bypass to the capacitor.

Ultrasonic cleaning is permissible, the recommended conditions being 8 Watts/litre at 20-45 kHz, with a process cycle of 2 minutes vapor rinse, 2 minutes immersion in the ultrasonic solvent bath and finally 2 minutes vapor rinse.

Surface Mounting Guide

MLC Chip Capacitors

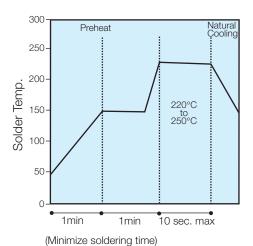
APPLICATION NOTES

Storage

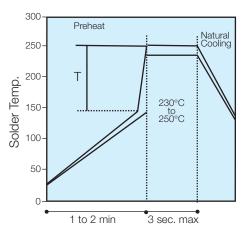
Good solderability is maintained for at least twelve months, provided the components are stored in their "as received" packaging at less than 40°C and 70% RH.

Solderability

Terminations to be well soldered after immersion in a 60/40 tin/lead solder bath at $235 \pm 5^{\circ}$ C for 2 ± 1 seconds.


Leaching

Terminations will resist leaching for at least the immersion times and conditions shown below.


Termination Type	Solder	Solder	Immersion Time
	Tin/Lead/Silver	Temp. °C	Seconds
Nickel Barrier	60/40/0	260±5	30±1

Recommended Soldering Profiles

Reflow

Wave

(Preheat chips before soldering) T/maximum 150°C

General

Surface mounting chip multilayer ceramic capacitors are designed for soldering to printed circuit boards or other substrates. The construction of the components is such that they will withstand the time/temperature profiles used in both wave and reflow soldering methods.

Handling

Chip multilayer ceramic capacitors should be handled with care to avoid damage or contamination from perspiration and skin oils. The use of tweezers or vacuum pick ups is strongly recommended for individual components. Bulk handling should ensure that abrasion and mechanical shock are minimized. Taped and reeled components provides the ideal medium for direct presentation to the placement machine. Any mechanical shock should be minimized during handling chip multilayer ceramic capacitors.

Preheat

It is important to avoid the possibility of thermal shock during soldering and carefully controlled preheat is therefore required. The rate of preheat should not exceed 4°C/second and a target figure 2°C/second is recommended. Although an 80°C to 120°C temperature differential is preferred, recent developments allow a temperature differential between the component surface and the soldering temperature of 150°C (Maximum) for capacitors of 1210 size and below with a maximum thickness of 1.25mm. The user is cautioned that the risk of thermal shock increases as chip size or temperature differential increases.

Soldering

Mildly activated rosin fluxes are preferred. The minimum amount of solder to give a good joint should be used. Excessive solder can lead to damage from the stresses caused by the difference in coefficients of expansion between solder, chip and substrate. AVX terminations are suitable for all wave and reflow soldering systems. If hand soldering cannot be avoided, the preferred technique is the utilization of hot air soldering tools.

Cooling

Natural cooling in air is preferred, as this minimizes stresses within the soldered joint. When forced air cooling is used, cooling rate should not exceed 4°C/second. Quenching is not recommended but if used, maximum temperature differentials should be observed according to the preheat conditions above.

Cleaning

Flux residues may be hygroscopic or acidic and must be removed. AVX MLC capacitors are acceptable for use with all of the solvents described in the specifications MIL-STD-202 and EIA-RS-198. Alcohol based solvents are acceptable and properly controlled water cleaning systems are also acceptable. Many other solvents have been proven successful, and most solvents that are acceptable to other components on circuit assemblies are equally acceptable for use with ceramic capacitors.

Internet/FAX/CD Rom/Software

Need Additional Information on AVX Products

Internet -

For more information visit us on the worldwide web at http://www.avxcorp.com

FAX Back Service –

Just dial 1-800-879-1613 and request the index for additional catalog information faxed to your FAX number.

CD ROM -

Or get in touch with your AVX representative for a CD Rom or copies of the catalogs and technical papers.

Software –

Comprehensive capacitor application software library which includes:

SpiCap (for MLC chip capacitors)

SpiTan (for tantalum capacitors)

SpiCalci (for power supply capacitors)

SpiMic (for RF-Microwave capacitors)

For AVX/Elco connector information contact your local AVX/Elco representative

NOTICE: Specifications are subject to change without notice. Contact your nearest AVX Sales Office for the latest specifications. All statements, information and data given herein are believed to be accurate and reliable, but are presented without guarantee, warranty, or responsibility of any kind, expressed or implied. Statements or suggestions concerning possible use of our products are made without representation or warranty that any such use is free of patent infringement and are not recommendations to infringe any patent. The user should not assume that all safety measures are indicated or that other measures may not be required. Specifications are typical and may not apply to all applications.

USA

AVX Myrtle Beach, SC Corporate Offices

Tel: 843-448-9411 FAX: 843-448-1943

AVX Northwest, WA

Tel: 360-669-8746 FAX: 360-699-8751

AVX North Central, IN

Tel: 317-848-7153 FAX: 317-844-9314

AVX Northeast, MA

Tel: 508-485-8114 FAX: 508-485-8471

AVX Mid-Pacific, CA

Tel: 408-436-5400 FAX: 408-437-1500

AVX Southwest, AZ

Tel: 602-539-1496 FAX: 602-539-1501

AVX South Central, TX

Tel: 972-669-1223 FAX: 972-669-2090

AVX Southeast, NC

Tel: 919-878-6357 FAX: 919-878-6462

AVX Canada

Tel: 905-564-8959 FAX: 905-564-9728

EUROPE

AVX Limited, England European Headquarters

Tel: ++44 (0)1252 770000 FAX: ++44 (0)1252 770001

AVX S.A., France

Tel: ++33 (1) 69.18.46.00 FAX: ++33 (1) 69.28.73.87

AVX GmbH, Germany - AVX

Tel: ++49 (0) 8131 9004-0 FAX: ++49 (0) 8131 9004-44

AVX GmbH, Germany - Elco

Tel: ++49 (0) 2741 2990 FAX: ++49 (0) 2741 299133

AVX srl, Italy

Tel: ++390 (0)2 614571 FAX: ++390 (0)2 614 2576

AVX sro, Czech Republic

Tel: ++420 (0)467 558340 FAX: ++420 (0)467 2844

ASIA-PACIFIC

AVX/Kyocera, Singapore Asia-Pacific Headquarters

Tel: (65) 258-2833 FAX: (65) 350-4880

AVX/Kyocera, Hong Kong

Tel: (852) 2-363-3303 FAX: (852) 2-765-8185

AVX/Kyocera, Korea

Tel: (82) 2-785-6504 FAX: (82) 2-784-5411

AVX/Kyocera, Taiwan

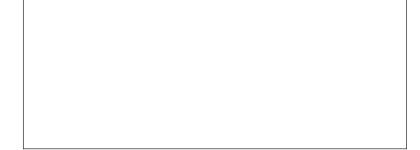
Tel: (886) 2-2516-7010 FAX: (886) 2-2506-9774

AVX/Kyocera, China

Tel: (86) 21-6249-0314-16 FAX: (86) 21-6249-0313

AVX/Kyocera, Malaysia

Tel: (60) 4-228-1190 FAX: (60) 4-228-1196


Elco, Japan

Tel: 045-943-2906/7 FAX: 045-943-2910

Kyocera, Japan

Tel: (81) 75-593-4518 FAX: (81) 75-502-2705

Contact:

